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a b s t r a c t

This paper presents an angle-based approach for distributed formation shape stabilization of multi-
agent systems in the plane. We develop an angle rigidity theory to study whether a planar framework
can be determined by angles between segments uniquely up to translations, rotations, scalings and
reflections. The proposed angle rigidity theory is applied to the formation stabilization problem, where
multiple single-integrator modeled agents cooperatively achieve an angle-constrained formation.
During the formation process, the global coordinate system is unknown for each agent and wireless
communications between agents are not required. Moreover, by utilizing the advantage of high degrees
of freedom, we propose a distributed control law for agents to stabilize a target formation shape with
desired orientation and scale. Simulation examples are performed for illustrating the effectiveness of
the proposed control strategies.

Published by Elsevier Ltd.

1. Introduction

A multi-agent formation stabilization problem is to design a
decentralized control law for a group of mobile agents to sta-
bilize a prescribed formation shape. An associated fundamental
problem is: how to determine the geometric shape of a graph
embedded in a space, based on some local constraints such as
displacements, distances and bearings.

A straightforward approach for determining a shape is con-
straining the location of each vertex in the graph. A position-
based formation strategy usually takes large costs and is un-
necessary when the position of each agent is not strictly re-
quired. For reduction of information exchange and improvement
of robustness of the control strategy, a displacement-constrained
formation method, which determines the target formation shape
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by relative positions between agents, has been extensively stud-
ied (Coogan & Arcak, 2012; Fax & Murray, 2004; Jing, Zheng, &
Wang, 2016; Ren & Atkins, 2007; Xiao, Wang, Chen, & Gao, 2009).
This method is also called consensus-based formation since the
formation problem can often be transformed into a consensus
problem, which is a hot topic being widely studied (Jing et al.,
2016; Olfati-Saber, Fax, & Murray, 2007; Wang & Xiao, 2007a,b).
The investigations of displacement-based formation show that
the shape of a graph can be determined by inter-agent displace-
ments uniquely if the graph is connected. A disadvantage of
displacement-based formation control is the requirement of the
global coordinate system.

During the last decade, distance-based shape control gained
a lot of attention since it has no requirement of the global co-
ordinate system for each agent (Anderson, Yu, Fidan, & Hen-
drickx, 2008; Chen, Belabbas, & Başar, 2017; Krick, Broucke, &
Francis, 2009; Mou, Belabbas, Morse, Sun, & Anderson, 2016;
Oh & Ahn, 2011; Summers, Yu, Dasgupta, & Anderson, 2011;
Sun, Park, Anderson, & Ahn, 2017; Zelazo, Franchi, Bülthoff and
Robuffo Giordano, 2015). Different from the displacement-based
approach, for a noncomplete graph embedded in a space, it is
not straightforward to answer that whether its shape can be
determined by edge lengths uniquely. A tool of great utility to
deal with this problem is the traditional graph rigidity theory
(we will refer to this theory as distance rigidity theory in this
paper) (Asimow & Roth, 1978; Hendrickson, 1992; Liberti, Lavor,
Maculan, & Mucherino, 2014), which has been studied intensively
in the area of mathematics.
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In more recent years, bearing-constrained formation control
attracted many interests due to the low costs of bearing
measurements (Bishop, Shames, & Anderson, 2011; Eren, 2012;
Eren, Whiteley, Morse, Belhumeur, & Anderson, 2003; Michieletto,
Cenedese, & Franchi, 2016; Schiano, Franchi, Zelazo, & Giordano,
2016; Zelazo et al., 2015; Zelazo, Franchi, & Giordano, 2014;
Zelazo, Giordano and Franchi, 2015; Zhao & Zelazo, 2016, 2017).
In this issue, the formation shape is constrained by inter-agent
bearings. To distinguish what kind of shapes can be uniquely
determined by inter-agent bearings, the authors in Eren (2012)
and Zhao and Zelazo (2016) proposed the bearing rigidity theory.
Compared to distance-constrained formation control, an advan-
tage of bearing-constrained formation strategy is the fact that
no restriction on scale of the target formation is imposed. As
a result, it is simple to control the scale of a bearing-based
formation, which benefits for obstacle avoidance, see Zhao and
Zelazo (2017). Unfortunately, similar to the displacement-based
approach, a bearing-constrained formation requires either the
global coordinate system for each agent or developing observers
based on inter-agent communications (Zhao & Zelazo, 2016).
In Michieletto et al. (2016), Schiano et al. (2016) and Zelazo et al.
(2014, 2015), the authors achieved bearing-based formation con-
trol in the absence of the global coordinate system, but each agent
should have a controllable quantity determining the relationship
between the local body frame and the global coordinate frame.

Besides the above-mentioned investigations, there are some
other issues associated with formation control and formation
strategies, for more details, we refer the readers to Aranda, López-
Nicolás, Sagüés, and Zavlanos (2016), Jing, Zhang, Lee, and Wang
(2018b), Lin, Wang, Chen, Fu, and Han (2016), Oh, Park, and Ahn
(2015) and Wang, Shi, Chu, Zhang, and Zhang (2004).

This paper studies the angle-constrained formation problem
in the plane, in which the target formation shape is the shape
of a planar graph (in this paper, planar graphs refer to graphs in
the plane), and will be encoded by angles between pair of edges
joining a common vertex. Similar issues have been reported in
the literature. In Eren et al. (2003), the authors discussed the
possibility of an angle-based formation approach and presented
some initial results. In another relevant Ref. Zhao, Lin, Peng, Chen,
and Lee (2014), the authors solved the cyclic formation problem
by constraining the angle subtended at each vertex by its two
neighbors. In this case, the cyclic formation can be stretched
while preserving invariance of each angle, thus the target for-
mation cannot be accurately stabilized. In contrast to Zhao et al.
(2014), we study how to stabilize a formation shape via angle
constraints, such that the stabilized formation is congruent to
the target formation up to translations, rotations, scalings and re-
flections. In Buckley and Egerstedt (2017), the authors presented
infinitesimally shape-similar motions preserving angles, but they
did not give an approach for determining rigidity by angles only.

Our contributions can be summarized as follows. (i). Enlight-
ened by distance rigidity theory and bearing rigidity theory, we
propose an angle rigidity theory to study whether the shape
of a planar graph can be uniquely determined by angles only;
see Section 3. (ii). We prove that for a framework in the plane,
infinitesimal angle rigidity is equivalent to infinitesimal bearing
rigidity; Theorem 3. From Zhao, Sun, Zelazo, Trinh, and Ahn
(2017), infinitesimal angle rigidity is also a generic property of
the graph. (iii). We show that for a framework embedded by
a triangulated Laman graph, once it is strongly nondegenerate,
it can always be determined by angles uniquely up to transla-
tions, rotations, scalings and reflections; see Theorem 7. (iv). We
propose a distributed control law for achieving formation shape
stabilization based on the angle rigidity theory. It is shown that
our control strategy can locally exponentially stabilize multiple
agents to form an infinitesimally angle rigid formation in the

plane; see Theorem 8. (v). We design a distributed control law,
which can steer all agents to form a target formation shape with
prescribed orientation and scale; see Theorem 9. Note that in the
literature of formation maneuver control (Coogan & Arcak, 2012;
Sun et al., 2017; Zhao & Zelazo, 2017), controlling orientation and
scale of a formation usually cannot be achieved simultaneously.

The advantages of angle-based formation approach are three-
fold. (i). Each agent only has to measure relative displacements
from neighbors with respect to its local coordinate system. (ii). No
wireless communications between agents are required. (iii). Com-
pared to displacement-, distance- and bearing-based approaches,
an angle-constrained shape has higher degrees of freedom. More
precisely, angles are invariant to motions including translations,
rotations and scalings, while inter-agent displacements, distances
and bearings are only invariant to a subset of these motions. As
a result, it is more convenient to achieve formation maneuver
control by using angle constraints. In Michieletto et al. (2016),
Schiano et al. (2016) and Zelazo et al. (2014, 2015), the formation
constraints are also invariant to translations, rotations, scalings
and reflections. Nevertheless, the trivial rotation in these papers
consists of a rotation of the framework in the global coordinate
frame, and a rotation of each agent in its local coordinate frame
with the same angular speed as that of the whole framework.

The paper is structured as follows. Section 2 introduces some
preliminaries of distance- and bearing rigidity theory. Section 3
presents the angle rigidity theory. Section 4 firstly proposes a dis-
tributed control law for achieving formation stabilization based
on angle rigidity theory, and then proposes a distributed ma-
neuver control law for stabilizing a formation shape with pre-
specified orientation and scale. Section 5 presents an application
example to verify validity of the formation strategy. Section 6
concludes the whole paper.

Notations: Throughout this paper, R denotes the set of real num-
bers; Rn is the n-dimensional Euclidean space; ∥ · ∥ stands for
the Euclidean norm; XT means the transpose of matrix X; ⊗ is
the Kronecker product. range(X), null(X) and rank(X) denote the
range space, null space, and the rank of matrix X; In represents
the n× n identity matrix; A \ B is the set of those elements of A
not belonging to B; A vector p = (pT1, . . . , p

T
s )

T with pi ∈ R2, i =
1, . . . , s is said to be degenerate if p1, . . . , ps are collinear; O(2) is

the orthogonal group in R2; Ro(θ ) =
(
cos θ − sin θ

sin θ cos θ

)
is the 2-

dimensional rotation matrix associated with θ ∈ [0, 2π ); Re(θ ) =

Ro(θ )Ī with Ī =
(
1 0
0 −1

)
is the 2-dimensional reflection matrix

associated with θ ∈ [0, 2π ); x⊥ = Ro( π
2 )x for x ∈ R2. For Xi ∈

Ra×b, i = 1, . . . , q, we denote diag(Xi) = blockdiag{X1, . . . , Xq} ∈

Rqa×qb.
An undirected graph with n vertices and m edges is denoted as

G = (V, E), where V = {1, . . . , n} and E ⊂ V×V denote the vertex
set and the edge set, respectively. Here we do not distinguish (i, j)
and (j, i) in E . The incidence matrix is represented by H = [hij],
which is a matrix with rows and columns indexed by edges and
vertices of G with an orientation. hij = 1 if the ith edge sinks
at vertex j, hij = −1 if the ith edge leaves vertex j, and hij = 0
otherwise. It is well-known that rank(H) = n − 1 if and only
if graph G is connected. Let K denote a complete graph with n
vertices.

2. Preliminaries of graph rigidity theory

In this section, we introduce some preliminaries of distance
and bearing rigidity theory in the plane, which are taken from Asi-
mow and Roth (1978), Hendrickson (1992) and Zhao and Zelazo
(2016). Distance rigidity theory is to answer whether p can be
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uniquely determined up to translations, rotations, and reflections,
by partial length constraints on edges of G, while bearing rigidity
theory is to answer whether p can be uniquely determined up to
translations and scalings by partial bearing constraints on edges
of G. In what follows, we will introduce these two theories in a
unified approach.

We refer to a pair (G, p) as a framework, where G is a graph
and p = (pT1, . . . , p

T
n )

T
∈ R2n is called a configuration, pi is

the coordinate of vertex i, i = 1, . . . , n. To define rigidity of
a framework (G, p), a smooth rigidity function rG(·) : R2n

→

Rs should be first given, where s is some positive integer. By
the given rigidity function rG , several definitions associated with
rigidity can be induced as follows.

A framework (G, p) is said to be rigid if there exists a neigh-
borhood Up of p such that r−1G (rG(p))∩Up = r−1K (rK(p))∩Up. (G, p)
is globally rigid if r−1G (rG(p)) = r−1K (rK(p)).

An infinitesimal motion is an assignment of velocities that
guarantees the invariance of rG(p), i.e.,

ṙG(p) =
∂rG(p)

∂p
v = 0, (1)

where v = (vT
1 , . . . , vT

n )
T , vi = ṗi is the velocity of vertex i. We say

a motion is trivial if it satisfies Eq. (1) for any framework with n
vertices. A framework is infinitesimally rigid if every infinitesimal
motion is trivial. Denote the rigidity matrix ∂rG (p)

∂p by R(p). Then
equation (1) is equivalent to ṙG(p) = R(p)ṗ = 0. Let T be the
dimension of the space formed by all trivial motions, then a
framework (G, p) is infinitesimally rigid if and only if rank(R(p)) =
2n− T .

In the traditional graph rigidity theory, the above-mentioned
rigidity function rG(·) is commonly set by the following distance
rigidity function:

DG(p) = (. . . , ∥eij(p)∥2, . . .)T , (i, j) ∈ E, (2)

where eij(p) = pi − pj.
In Eren (2012) and Zhao and Zelazo (2016), the authors pre-

sented bearing rigidity theory by using the following bearing
rigidity function as the rigidity function rG(·):

BG(p) = (. . . , gT
ij (p), . . .)

T , (i, j) ∈ E, (3)

where gij(p) =
pi−pj
∥pi−pj∥

.
For a framework in the plane, there are totally 2 independent

translations, 1 independent rotation, 1 independent scaling. The
trivial motions for a framework determined by distances can only
be translations and rotations, thus the dimension of trivial motion
space should be TD = 2 + 1 = 3. The trivial motions for a
framework determined by bearings are translations and scalings,
accordingly, the dimension of trivial motion space is TB = 2+1 =
3.

The following two lemmas will be used in our paper.

Lemma 2.1 (Zhao & Zelazo, 2016). A framework in R2 is infinitesi-
mally bearing rigid if and only if it is infinitesimally distance rigid.

Lemma 2.2 (Sun et al., 2017). If a framework in R2 is infinitesimally
distance rigid, then for any vertex i, the relative position vectors
pi − pj, j ∈ Ni cannot be all collinear.

It is worth noting that infinitesimal bearing rigidity implies
global bearing rigidity (Zhao & Zelazo, 2016), whereas infinitesi-
mal distance rigidity cannot induce global distance rigidity.

3. Angle rigidity

In this section, we develop an angle rigidity theory to inves-
tigate how to encode geometric shapes of graphs embedded in

Fig. 1. (a) A globally and infinitesimally angle rigid framework with
T ∗G = {(1, 2, 3), (2, 1, 3)}. (b) A framework that is not angle rigid.
(c) A globally and infinitesimally angle rigid framework with T ∗G =

{(1, 2, 4), (2, 1, 4), (2, 3, 4), (3, 2, 4), (4, 1, 3)}. (d) A globally angle rigid frame-
work with TG = {(1, 2, 3), (2, 1, 3), (2, 1, 3)}.

the plane through angles only. For a framework (G, p) in R2,
we will employ gT

ij gik as the object we will constrain, which is
actually the cosine of the angle between edges eij and eik. Let
TG = {(i, j, k) ∈ V3

: (i, j), (i, k) ∈ E, j < k}, then {gT
ij gik =

cijk : cijk ∈ [−1, 1], (i, j, k) ∈ TG} is the set of constraints
on all angles in (G, p). We should note that a framework often
has redundant angle information for shape determination. For
example, in Fig. 1(a), once gT

12g13 and gT
21g23 are available, it holds

that gT
31g32 = cos(π−arccos(gT

12g13)−arccos(gT
21g23)). That is, the

information of partial angles in the graph is often sufficient to
recognize a framework. Therefore, by employing a subset T ∗G ⊂
TG with |T ∗G | = w, we will try to study whether (G, p) can be
uniquely determined by {gT

ij gik ∈ [−1, 1] : (i, j, k) ∈ T ∗G } based
on the angle rigidity theory to be developed in this paper. Note
that although T ∗G is only a subset of TG , the elements in T ∗G should
involve all vertices in G, otherwise the shape of (G, p) can never
be determined. Moreover, we call T ∗G the angle index set.

For a framework (G, p), the angle rigidity function correspond-
ing to a given angle index set T ∗G can be written as

fT ∗G (p) = (. . . , gT
ij (p)gik(p), . . .)

T , (i, j, k) ∈ T ∗G . (4)

For the sake of notational simplicity, we denote fG(p) = fTG (p).
It is easy to see that whether fT ∗G (p) can determine a unique

shape congruent to p is determined by the choice of T ∗G . As a
result, the definitions of angle rigidity must be associated with
T ∗G . We present the following definitions.

Definition 3.1. A framework (G, p) is angle rigid if there exist
an angle index set T ∗G and a neighborhood Up of p such that
f −1T ∗G

(fT ∗G (p)) ∩ Up = f −1K (fK(p)) ∩ Up.

Definition 3.2. A framework (G, p) is globally angle rigid if there
exists an angle index set T ∗G such that f −1T ∗G

(fT ∗G (p)) = f −1K (fK(p)).

Definition 3.3. A framework (G, p) is minimally angle rigid if
(G, p) is angle rigid, and deletion of any edge will make (G, p) not
angle rigid.

By these definitions, the frameworks (a) and (c) in Fig. 1 are
both globally angle rigid. For the framework (b), by moving the
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vertices along the blue arrows, fG is invariant but the shape is
deformed, thus (b) is not angle rigid. For the framework (d), since
the graph is complete, it obviously holds f −1G (fG(p)) = f −1K (fK(p)),
thus (d) is globally angle rigid. Note that the shape of (d) still
cannot be determined by angles uniquely.

Similar to distance and bearing rigidity theory, we define the
infinitesimal angle motion as a motion preserving the invariance
of fT ∗G (p). The velocity v = ṗ corresponding to an infinitesimal
motion should satisfy ḟT ∗G (p) = 0, which is equivalent to the
following equation:

ġT
ij gik + gT

ij ġik = 0, (i, j, k) ∈ T ∗G . (5)

From Zhao and Zelazo (2016), ∂gij
∂eij
=

1
∥eij∥

Pij, where Pij ≜ P(gij),
P(·) : R2

→ R2×2 is a projection matrix defined as P(x) = I2−xxT ,
x ∈ R2 is a unit vector. Then we have ġij = 1

∥eij∥
Pijėij. Let g(p) =

(. . . , gT
ij (p), . . .)

T , where (i, j) ∈ E , and Rg ≜
∂ fT ∗G
∂g . It follows from

the chain rule that

ḟT ∗G =
∂ fT ∗G
∂g

∂g
∂e

∂e
∂p

ṗ = Rg (p) diag(
Pij
∥eij∥

)H̄ṗ = RT ∗G (p)ṗ,

where H̄ = H ⊗ I2, RT ∗G (p) ≜ Rg (p) diag(
Pij
∥eij∥

)H̄ = Rg (p)RB(p) ∈

Rw×2n is termed the angle rigidity matrix, RB =
∂g(p)
∂p is actually

the bearing rigidity matrix. Therefore, Eq. (5) is equivalent to
RT ∗G (p)ṗ = 0.

Next we define infinitesimal angle rigidity; to do this, we
should distinguish all trivial motions for an angle-constrained
geometric shape. By an intuitive observation, the motions always
preserving invariance of angles in the framework are translations,
rotations, and scalings. Therefore, the dimension of the trivial
motion space is 2+1+1 = 4. Note that the trivial motion space is
always a subspace of null(RT ∗G ), implying that dim(null(RT ∗G )) ≥ 4.
We present the following definition.

Definition 3.4. A framework (G, p) is infinitesimally angle rigid if
there exists an angle index set T ∗G such that every possible motion
satisfying (5) is trivial, or equivalently, dim(null(RT ∗G )) = 4.

By this definition, the frameworks in Fig. 1(a) and (c) are
both infinitesimally angle rigid. The frameworks (b) and (d) are
not infinitesimally angle rigid since they both have nontrivial
infinitesimal angle motions, which are interpreted by the arrows
in blue.

In this paper, we say an angle index set T ∗G supports or is
suitable for (global, minimal, infinitesimal) angle rigidity of (G, p)
if T ∗G makes the condition in the corresponding definition valid.
We say T ∗G is minimally suitable if T ∗G is suitable and no proper
subset of T ∗G can be suitable. It is easy to see from Definitions 3.1–
3.4 that the angle rigidity property of a framework (G, p) is
completely dependent on G and p. After (G, p) is given, whether
a suitable T ∗G exists becomes certain. However, even for an angle
rigid framework, there may exist T ∗G such that the conditions
in the angle rigidity definitions are invalid. For example, if we
choose T ∗G = TT where T is a spanning tree of G, T ∗G can never
support angle rigidity of (G, p). On the other hand, there may
exist multiple choices of T ∗G supporting angle rigidity of a rigid
framework. In Section 3.2, Algorithm 1 will be given to construct
a suitable angle index set.

The following lemma gives the specific form of trivial motions
preserving invariance of angles.

Lemma 3.1. The trivial motion space for angle rigidity in R2 is
S = Sr ∪ Ss ∪ St , where Sr = {(In ⊗ Ro( π

2 ))p} is the space formed
by infinitesimal rotations, Ss = span{p} is the space formed by
infinitesimal scalings, St = null(H̄) = {1n ⊗ (1, 0)T , 1n ⊗ (0, 1)T } is
the space formed by infinitesimal translations.

Lemma 3.1 is easy to verify, the proof is omitted here. A direct
consequence of Lemma 3.1 is the following result.

Lemma 3.2. A framework (G, p) is infinitesimally angle rigid if and
only if null(RTG (p)) = S .

In Asimow and Roth (1978), the authors showed that the
set D−1K (DK(p)), which includes all configurations having inter-
distance congruent to p, is always a manifold of dimension 3.
In fact, since an angle-constrained shape has at least 4 degrees
of freedom, f −1K (fK(p)) is a manifold of dimension 4 when (K, p)
is infinitesimally angle rigid (i.e., p is a regular point). See the
following theorem.

Theorem 1. Let Sp ≜ {q ∈ R2n
: q = c(In ⊗ R)p + 1n ⊗ ξ, R ∈

O(2), c ∈ R \ {0}, ξ ∈ R2
}. If (K, p) is infinitesimally angle rigid,

then f −1K (fK(p)) = Sp, and Sp is a 4-dimensional manifold.

The proof will be presented in later subsections.
With the aid of Theorem 1, we can derive the relationship

between infinitesimal angle rigidity and angle rigidity, which is
as follows.

Theorem 2. If (G, p) is infinitesimally angle rigid for T ∗G , then (G, p)
is angle rigid for T ∗G .

Proof. By Asimow and Roth (1978, Proposition 2) and rank
∂ fT ∗G
∂p =

2n− 4, there is a neighborhood U of p, such that f −1T ∗G
(fT ∗G (p)) ∩ U

is a manifold of dimension 4. From Theorem 1, f −1K (fK(p)) is also
a 4-dimensional manifold. As a result, f −1T ∗G

(fT ∗G (p)) and f −1K (fK(p))
coincide in U , implying that (G, p) is angle rigid. □

The converse of Theorem 2 is not true. A typical counter-
example is the framework (K, p) with p being a degenerate con-
figuration. In this case, (K, p) is globally angle rigid but not
infinitesimally angle rigid.

3.1. The relation to infinitesimal bearing rigidity

In this subsection, we will establish some connections be-
tween angle rigidity and bearing rigidity (Zhao et al., 2017; Zhao
& Zelazo, 2016). The following theorem shows the equivalence
of infinitesimal angle rigidity and infinitesimal bearing rigidity
in the plane, which also implies the feasibility of angle-based
approach for determining a framework in the plane.

Theorem 3. A framework (G, p) is infinitesimally angle rigid if and
only if it is infinitesimally bearing rigid.

Proof. See Appendix A. □

Remark 3.1. In Zhao et al. (2017), the authors proved that
infinitesimal bearing rigidity is a generic property of the graph.
That is, if (G, p) is infinitesimally bearing rigid, then (G, q) is
infinitesimally bearing rigid for almost all configuration q. The
underlying approach is showing that a framework embedded by a
graph is either infinitesimally bearing rigid or not infinitesimally
bearing rigid for all generic configurations.1 From Theorem 3,
infinitesimal angle rigidity is also a generic property of the graph,
thus is primarily determined by the graph, rather than the con-
figuration. In fact, angle rigidity is also a generic property of
the graph. To show this, it suffices to show that an angle rigid

1 A configuration p = (pT1 , . . . , p
T
n )

T
∈ R2n is generic if its 2n coordinates are

algebraically independent (Jing et al., 2018b). The set of generic configurations
in R2n is dense.
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framework (G, p∗) with a generic configuration p∗ is always in-
finitesimally angle rigid. In Jing et al. (2018b, Theorem 3.17), we
have shown that a generic configuration p∗ must be a regular
point, i.e., rank(RTG (p

∗)) = maxp∈R2n rank(RTG (p)) ≜ κ . By Asi-
mow and Roth (1978, Proposition 2), there exists a neighborhood
U of p∗, such that f −1G (fG(p∗))∩U is a manifold of dimension 2n−κ .
From the definition of angle rigidity and Theorem 1, we know that
there exists a neighborhood U ′ of p∗, such that f −1G (fG(p∗))∩U ′ is
a manifold of dimension 4. By definition of the manifold, we have
2n − κ = 4. Then κ = 2n − 4. That is, (G, p∗) is infinitesimally
angle rigid. Hence, angle rigidity is also a generic property of the
graph. By a similar approach, it can be easily obtained that global
angle rigidity is also a generic property of the graph.

Remark 3.2. From Definition 3.4, we can conclude that the
minimal number of angle constraints for achieving infinitesimal
angle rigidity is 2n−4. This fact has also been shown in Eren et al.
(2003). On the other hand, it has been shown in Zhao and Zelazo
(2016) that the minimal number of edges for a framework to be
infinitesimally bearing rigid is 2n− 3. By Theorem 3, the same is
true for infinitesimal angle rigidity.

Consider a framework (G, p) in the plane. For distance rigidity
theory, it is obvious that the shape of (G, p) can be uniquely
determined by DG(p) if G = K. For bearing rigidity theory, the
authors of Zhao and Zelazo (2016) showed that BG(p) uniquely
determines a shape if (G, p) is infinitesimally bearing rigid. How-
ever, for angle rigidity theory, it cannot be immediately answered
that whether the shape can be uniquely determined by angles
between edges. This is because angles are only constraints on
relationships between those edges joining a common vertex. Even
for a complete graph, if n > 3, there always exist disjoint
edges, the angle between each pair of disjoint edges cannot be
constrained directly.

In the following theorem, the connection between f −1K (fK(p))
and B−1K (BK(p)) is established.

Theorem 4. Given configurations p, q ∈ R2n, q ∈ f −1K (fK(p)) if and
only if (In ⊗ R)−1q ∈ B−1K (BK(p)), where R ∈ O(2).

Proof. See Appendix B. □

Remark 3.3. One can realize that the validity of Theorem 4 will
not be lost provided the complete graph K is replaced with G,
where (G, p) is both globally angle rigid and globally bearing rigid.
Note that once K is replaced with a general graph G, Theorem 4
may become invalid. As shown in Fig. 3, although q ∈ f −1G (fG(p)),
there does not exist R ∈ O(2) such that q ∈ (In ⊗ R)−1q ∈
B−1G (BG(p)).

It is important to note that Theorem 4 cannot induce equiv-
alence of global angle rigidity and global bearing rigidity. Some
examples show that this equivalence holds, but we still have no
idea of how to prove it. Nonetheless, we are able to establish the
following result.

Theorem 5. If a framework (G, p) is (globally) angle rigid, then it
is (globally) bearing rigid.

Proof. Suppose (G, p) is angle rigid. Then there exists a neigh-
borhood Up of p such that f −1G (fG(p)) ∩ Up = f −1K (fK(p)) ∩ Up.
For this Up, consider any q ∈ B−1G (BG(p)) ∩ Up. It follows from
BG(p) = BG(q) that fG(p) = fG(q). Therefore, fK(p) = fK(q). By
Theorem 4, BK(p) = (Im ⊗ R)BK(q) for some R ∈ O(2). Recall
that BG(p) = BG(q), we have R = I2. As a result, BK(p) = BK(q),
i.e., q ∈ B−1K (BK(p)). That is, (G, p) is bearing rigid.

From Zhao and Zelazo (2016), bearing rigidity is equivalent to
global bearing rigidity. Since global angle rigidity obviously leads
to angle rigidity, it can also induce global bearing rigidity. □

To prove Theorem 1, we introduce the following theorem
in Lee (2000).

Theorem 6 (Lee, 2000 Constant-Rank Level Set Theorem). Let M and
N be smooth manifolds, and let Φ : M → N be a smooth map, the
Jacobian matrix of Φ has constant rank r. Each level set of Φ is a
properly embedded submanifold of codimension r in M.

Proof of Theorem 1. From Theorem 3, (K, p) is infinitesimally
bearing rigid. Zhao and Zelazo (2016) shows that B−1K (BK(p)) =
{q ∈ R2n

: q = cp + 1n ⊗ ξ, c ∈ R \ {0}, ξ ∈ R2
}. Together with

Theorem 4, there must hold f −1K (fK(p)) = Sp.
Next we show Sp is a manifold. For any q ∈ f −1K (fK(p)), it is

obvious that q = (In ⊗R)(cp+ 1n ⊗ ξ ) for some R ∈ O(2), scalar
c and vector ξ ∈ R2. From the chain rule, we have

rank
∂ fK(q)

∂q
= rank

∂ fK(p)
∂c(In ⊗ R)p

= rank
[∂ fK(p)

∂p
1
c
(In ⊗ R−1)

]
= 2n− 4.

Note that fK : R2n
→ R|TK| is a smooth map, according to

Theorem 6, f −1K (fK(p)) is a properly embedded submanifold of
dimension 2n− (2n− 4) = 4. □

3.2. Construction of T ∗G for infinitesimal angle rigidity

From Definition 3.4 it is easy to see that TG is always sufficient
to determine whether a framework is infinitesimally angle rigid
or not. However, the set of angles determined by TG is usually
redundant. To reduce computational cost, we give an algorithm
to construct a subset T ∗G ⊂ TG , which is also sufficient to
determine infinitesimal angle rigidity. In the proof for sufficiency
of Theorem 3, we have presented an approach for constructing a
set T ∗G , and proved that T ∗G is a suitable angle index set. Here we
give the following algorithm to implement this procedure.

Algorithm 1 Finding a Suitable Angle Index Set T ∗G for Infinitesi-
mal Angle Rigidity
Input: An infinitesimally angle rigid framework (G, p) with p =

(pT1, · · · , p
T
n )

T
∈ R2n.

Output: T ∗G
1: Initialize T ∗G ← ∅
2: for all i ∈ V do
3: Initialize iT ∗G ← ∅
4: Compute the neighbor set of i in G, i.e., Ni
5: Select ji from Ni randomly, N̂i ← {ji} ∪ {k ∈ Ni : pi −

pji is collinear with pi − pk}, Ňi ← Ni \ N̂i

6: iT ∗G ←
iT ∗G ∪ (i, ji, k) for all k ∈ Ňi. Proceed only if |N̂i|> 1

7: Select ki from Ňi randomly
8: for all j ∈ N̂i \ {ji} do
9: iT ∗G ←

iT ∗G ∪ (i, j, ki) if j < ki, iT ∗G ←
iT ∗G ∪ (i, ki, j)

otherwise
10: end for
11: T ∗G ←

iT ∗G
12: end for
13: return T ∗G

Since each vertex has at most n − 1 neighbors, it is easy
to see that the number of elementary operations performed by
Algorithm 1 is at most n(n − 2). Hence the time complexity of
Algorithm 1 is O(n2).
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Fig. 2. Both (G, p) and (G, q) are infinitesimally angle rigid for T ∗G =

{(1, 2, 4), (4, 1, 2), (1, 3, 4), (4, 1, 3)}, globally angle rigid for T̄ ∗G = {(1, 2, 3)} ∪
T ∗G .

Fig. 3. fG (p) = fG (q), but there does not exist R ∈ O(2) such that BG (p) =
(Im ⊗R)BG (q). The angles in red are all constrained angles determined by TG .

Fig. 4. An example to illustrate the construction of iT ∗G by Algorithm 1. (a) The
subgraph composed of vertex i and its neighbors j1 , j2 , k1 , k2 , k3 . Note that
i, k2, k3 are collinear, i, j1, j2 are collinear. (b) N̂i = {j1, j2}, Ňi = {k1, k2, k3}. If
js and kl are connected by a red line, it implies that the angle between edge
(i, js) and edge (i, kl) is selected to be constrained. This also implies that (i, js, kl)
(if js < kl) or (i, kl, js) (if kl < js) is an element of iT ∗G . (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

An example of constructing iT ∗G by Algorithm 1 is shown in
Fig. 4.

Note that for an infinitesimally angle rigid framework, the
angle index set generated by Algorithm 1 is suitable but not
minimally suitable for infinitesimal angle rigidity. For example,
let (G, p) be a minimally angle rigid framework, then |E| =
2n − 3. For a set T ∗G generated by Algorithm 1, we have |T ∗G | =∑

i∈V |
iT ∗G | =

∑
i∈V (|Ni| − 1) = 2(2n− 3)− n = 3n− 6 ≥ 2n− 4

for n ≥ 2. Currently we do not have an algorithm to construct a
minimally suitable angle index set for an arbitrary infinitesimally
angle rigid framework.

Remark 3.4. Although T ∗G constructed by Algorithm 1 supports
infinitesimal angle rigidity, it may not support global angle rigid-
ity. As shown in Fig. 2(a), by Algorithm 1, we can obtain T ∗G =
{(1, 2, 4), (4, 1, 2), (1, 3, 4), (4, 1, 3)}. Although (G, p) is infinites-
imally angle rigid, fT ∗G (p) may determine an incorrect shape as
shown in Fig. 2(b). However, if we let T̄ ∗G = {(1, 2, 3)} ∪ T ∗G , then

fT̄ ∗G (p) can always determine a correct shape. This implies that
(G, p) in Fig. 2(a) is both infinitesimally and globally angle rigid
for T̄ ∗G (p).

In fact, even for a complete graph, it is possible that the geo-
metric shape cannot be determined by angle-only or bearing-only
information. A typical example is the degenerate configuration
shown in Fig. 1(d). Generally, we hope to determine a framework
(G, p) by angles uniquely up to translations, rotations, scalings
and reflections in the plane. That is, f −1G (fG(p)) = Sp. In the
next subsection, we will introduce a specific class of frameworks
satisfying this condition.

3.3. A class of frameworks uniquely determined by angles

In Chen et al. (2017), the authors introduced a particular class
of Laman graphs termed triangulated Laman graphs, which are
constructed by a modified Henneberg insertion procedure. In
what follows, we will show that the shape of such frameworks
can always be determined by angles uniquely. Let Ln = (Vn, En)
be an n−point(n ≥ 3) triangulated Laman graph, its definition is
as follows.

Definition 3.5. Let L2 be the graph with vertex set V2 = {1, 2}
and edge set E2 = {(1, 2)}. Ln (n ≥ 3) is a graph obtained by
adding a vertex n and two edges (n, i), (n, j) into graph Ln−1 for
some i and j satisfying (i, j) ∈ En−1.

Note that the triangulated Laman graph considered here is an
undirected graph. Now we give the following result for frame-
works embedded by triangulated Laman graphs.

Lemma 3.3. A triangulated framework (Ln, p) is infinitesimally
distance rigid if and only if (Ln, p) is strongly nondegenerate, i.e., pi,
pj and pk are not collinear for any three vertices i, j, k satisfying
(i, j), (j, k), (i, k) ∈ En.

Proof. The proof for sufficiency has been given in Chen et al.
(2017). Next we give the proof for necessity. Suppose that strong
nondegeneracy does not hold, then there exist i, j, k ∈ V , such
that (i, j), (j, k), (i, k) ∈ En and pi, pj, pk stay collinear. Note that
(Ln, p) has exactly 2n − 3 edges. Let RD(p) =

∂DG (p)
∂p ∈ R(2n−3)×2n

be the distance rigidity matrix. To guarantee rank(RD(p)) = 2n−3,
RD(p) should be of full row rank. However, it is easy to see that
∂∥eij∥2

∂p , ∂∥eik∥2

∂p , and ∂∥ejk∥2

∂p are always linearly dependent. Hence,

RD(p) cannot be of full row rank, which is a contradiction. □

The following theorem shows that the shape of a strongly
nondegenerate triangulated framework in the plane can always
be uniquely determined by angles. Due to space limitation, the
proof is omitted here. A detailed proof can be found in Jing, Zhang,
Lee, and Wang (2018a).

Theorem 7. A triangulated framework (Ln, p) is strongly nonde-
generate

(i) if and only if (Ln, p) is minimally infinitesimally angle rigid. A
minimally suitable angle index set is

T ∗Ln
= {(i, j, k) ∈ V3

n : (i, j), (j, k), (i, k) ∈ En, i, j < k}; (6)

(ii) only if (Ln, p) is globally angle rigid. A minimally suitable
angle index set is T †

Ln = T ∗Ln
∪ ∆TLn , where ∆TLn = {(i, k, l) :

k = min{Ni∩Nj∩Vl−1}, i, j ∈ Nl, i < j < l, l = 4, . . . , n} if n ≥ 4,
and ∆TLn = ∅ otherwise.
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Fig. 5. (a) A framework embedded by a triangulated Laman
graph L5 . (L5, p) is infinitesimally angle rigid for T ∗L5

=

{(1, 2, 3), (1, 3, 4), (1, 4, 5), (2, 1, 3), (3, 1, 4), (4, 1, 5)}, and globally angle
rigid for T †

L5
= T ∗L5

∪ {(1, 2, 4), (1, 3, 5)}. The angles in red are constrained
angles determined by T †

L5
. (b) A framework embedded by a Laman graph that

is not triangulated. The framework is globally and infinitesimally angle rigid,
but T ∗Ln

is not sufficient for its global and infinitesimal angle rigidity. The
angles in red are constrained angles determined by T ∗Ln

.

An example of strongly nondegenerate framework embedded
by a triangulated Laman graph is shown in Fig. 5(a). The angles
in red are constrained angles determined by T †

L5
. The framework

in Fig. 5(b) is both globally angle rigid and infinitesimally angle
rigid, but it is not embedded by a triangulated Laman graph.

It is important to note that strong nondegeneracy is not nec-
essary for a triangulated framework to be globally angle rigid. A
simple counterexample is the framework shown in Fig. 1(d). The
framework is globally angle rigid, but not strongly nondegener-
ate. Moreover, the angle index set we give in Theorem 7 is only
one suitable choice, there are also other choices of the angle index
set supporting minimal infinitesimal angle rigidity or global angle
rigidity of (Ln, p).

4. Application to formation control

In this section, we apply angle rigidity theory to distributed
formation control in the plane. The target formation will be
characterized by some constraints on angles. In order to form a
desired shape, the group of agents are required to meet these
constraints via a distributed controller.

4.1. The formation stabilization problem

Consider n agents moving in the plane, each agent i has a
simple kinematic point dynamics

ṗi = ui, i ∈ V, (7)

where pi ∈ R2 and ui ∈ R2 are the position and control
input of agent i, respectively, in the global coordinate frame.
We consider that the global coordinate system is absent for the
agents, each agent i has its own local coordinate system. Let pij be
the coordinate of agent j’s position with respect to agent i’s local
coordinate system. Agent i can measure the relative position state
pii − pik if k ∈ Ni.

In this paper, we employ an infinitesimally angle rigid frame-
work (G, p∗) to describe the target formation shape. Each agent is
viewed as a vertex of the framework. An interaction link between
two agents is regarded as an edge in graph G. That is, G is also the
sensing graph interpreting the interaction relationship between
agents.

The target formation shape can be defined as the following
manifold:

E = Sp∗ = {p ∈ R2n
: p = c(In ⊗ R)p∗ + 1n ⊗ ξ,

R ∈ O(2), c ∈ R \ {0}, ξ ∈ R2
}.

For the target formation (G, p∗), we make the following as-
sumption:

Assumption 4.1. Graph G contains a triangulated Laman graph
Ln as a subgraph, and (Ln, p∗) is strongly nondegenerate.

The set determining all angle constraints is given by

T F
G = {(i, j, k) ∈ V3

: (i, j), (j, k), (i, k) ∈ E, i, j < k}, (8)

Remark 4.1. Assumption 4.1 is a graphical condition for (G, p∗),
and will be the only condition for achieving stability of the target
formation. Once Assumption 4.1 holds, it is easy to see that T ∗Ln

⊂

T F
G , where T ∗Ln

is in form (6). Since we have shown in Theorem 7
that (Ln, p∗) is infinitesimally angle rigid for T ∗Ln

, together with
En ⊂ E , it follows that (G, p∗) is infinitesimally angle rigid for T F

G .
It is also worth noting that strongly nondegenerate configurations
form a dense subset of R2n, which is shown in Chen et al. (2017).

Problem 4.1. Given a set of angle constraints C = {gT
ij (p)gik(p) =

gT
ij (p
∗)gik(p∗)} generated by a framework (G, p∗) satisfying As-

sumption 4.1, design a distributed control law for each agent i
based on the relative position measurements {pii − pij, j ∈ Ni},
such that E is asymptotically stable.

4.2. A steepest descent formation controller

According to the set C, we define the following set as our target
equilibrium set of the formation system:

EF = {p ∈ R2n
: gT

ij (p)gik(p) = gT
ij (p
∗)gik(p∗), (i, j, k) ∈ T F

G }. (9)

Note that E is a subset of EF . E = EF if and only if (G, p∗) is
globally angle rigid for T F

G . In Fig. 5(a), the framework is only
infinitesimally angle rigid, even if all the angle constraints deter-
mined by T F

G are satisfied, it is possible that the target formation
shape is not formed. Nevertheless, from the definition of angle
rigidity, for any q ∈ E , there exists a neighborhood U of q, such
that E ∩ U = EF ∩ U . Hence, stability of EF can still be sufficient
for local stability of E .

Denote gij = gij(p), g∗ij = gij(p∗) for all (i, j) ∈ E , δ(i,j,k) =

gT
ij gik − g∗Tij g∗ik, (i, j, k) ∈ T ∗G . To ensure convergence of (9), the

multi-agent system should minimize the following cost function:

VF (p) =
1
2

∑
(i,j,k)∈T ∗G

(gT
ij gik − g∗Tij g∗ik)

2
=

1
2

∑
(i,j,k)∈T ∗G

δ2(i,j,k). (10)

On the basis of function (10), a gradient-based control strategy
can be derived as

uF
i = −∇piVF (p)

= −

∑
(j,k)∈NTi

y1(eij, eik)−
∑

(j,k)∈NT i

y2(eji, ejk), i ∈ V (11)

where NTi = {(j, k) ∈ V2
: (i, j, k) ∈ T F

G }, NT i = {(j, k) ∈ V2
:

(j, i, k) or (j, k, i) ∈ T F
G }, y1(eij, eik) = (gT

ij gik − g∗Tij g∗ik)(
Pij
∥eij∥

gik +
Pik
∥eik∥

gij), y2(eji, ejk) = (gT
ji gjk − g∗Tji g∗jk)

Pij
∥eij∥

gkj.
Observe that if (j, i, k) ∈ T F

G , the control input of agent i
includes a term associated with ejk. This can be obtained by
simple subtraction eik − eij. From the form of T F

G in (8), we have
k, j ∈ Ni. Therefore, uF

i is a distributed control strategy.
Let δ(p) = (. . . , δ(i,j,k), . . .)T = fT F

G
(p) − fT F

G
(p∗), (i, j, k) ∈ T ∗G .

By the chain rule, the multi-agent system (7) with control input
(11) can be written in the following compact form:

ṗ = −∇pVF (p) = −RT
T F
G
(p)δ(p). (12)
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The formation system (12) has the following easily checked
properties.

Lemma 4.1. Under the control law (11), the following statements
hold:

(i) The global coordinate system is not required for each agent.
(ii) If p(0) is degenerate, then p(t) = p(0) for t ≥ 0.
(iii) The centroid po(t) = 1

n

∑
i∈V pi(t) and the scale s(t) =√

1
n

∑
i∈V ∥pi(t)− po(t)∥2 are both invariant.

4.3. Stability analysis

Theorem 8. For a group of n ≥ 3 agents with dynamics (7) and
controller (11) moving in the plane. Under Assumption 4.1, for any
q ∈ E , there is a neighborhood Uq of q, such that if p(0) ∈ Uq, then
limt→∞ p(t) = p† for some p†

∈ E .

The proof is easy to obtain by center manifold theory, we refer
the readers to Jing et al. (2018b), Krick et al. (2009) and Lee (2000)
for details.

The difficulties in achieving global stability of the desired
formation shape are two folds: (i). Observe that the equilibrium
set of system (12) is E = {p ∈ R2n

: RT
T F
G
(p)δ = 0}. If RT F

G
∈

R|T
F
G |×2n is of full row rank, then p ∈ E implies δ = 0, which yields

p ∈ EF . However, RT F
G
(p) varies as the formation system evolves,

it is difficult to determine its rank. Moreover, once |T F
G | > 2n−4,

RT F
G
can never be of full row rank. As a result, undesired equilibria

often exist for system (12). (ii). Different from displacement,
distance and bearing constraints on pairwise agents, each angle
constraint involves three agents. The form of T F

G implies that only
those angles in triangles can be used as constraints to determine
the shape. Nevertheless, in some cases these constraints cannot
uniquely determine the desired formation shape. For example,
consider the framework in Fig. 5(a), although its shape can be
uniquely determined by angles, it cannot be uniquely determined
by angles corresponding to T F

G . Fig. 7 shows a counterexample
that under some initial condition, the agents exponentially form
an incorrect formation.

Theorem 8 actually means that by implementing the control
law (11), the agents can cooperatively restore the desired forma-
tion shape under a small perturbation from any q ∈ E , and the
convergence rate is as fast as e−γ t for some γ > 0 dependent on
q. However, it is uncertain that whether there exists a uniform
exponent γ for all q ∈ E . This is because E is not compact, there
does not exist a finite subcover containing E .

4.4. Orientation and scaling control

We have shown that the angle-constrained formation has 4
degrees of freedom, which is higher than that of displacement-
, distance-, and bearing-based formations. This ensures that one
advantage of the angle-based formation approach is the conve-
nience of orientation and scaling control. In this subsection, we
propose an angle-based control scheme to steer all agents to form
a target formation shape with pre-specified orientation and scale.

Given (G, p∗) as the target formation shape satisfying As-
sumption 4.1, a configuration forming the target formation with
desired orientation and scale can be written by p = c∗(In ⊗
Ro(θ∗))p∗+1n⊗ξ for some constant θ∗ ∈ [0, 2π ), c∗ ∈ R\{0} and
an arbitrary translational vector ξ ∈ R2. It is worth noting that
p∗i here denotes the position of agent i in the global coordinate
frame. Let p̃ = c∗(In ⊗Ro(θ∗))p∗, then the target equilibrium can
be described as

EM = {p ∈ R2n
: p = p̃+ 1n ⊗ ξ, ξ ∈ R2

}. (13)

To control the orientation of the formation, it is obviously
necessary that some agents should have access to the global coor-
dinate system. To keep the target shape in a precise orientation,
we will try to constrain the displacement between two adjacent
agents, which is similar to Sun et al. (2017). Since orientation
and scale of the ultimate formation are determined by these
two agents, we call them leaders. It is noteworthy that any
two adjacent agents can be selected as leaders, and controlling
their relative position is sufficient to control the orientation and
scale of the formation (this fact will be shown later). Moreover,
different from Sun et al. (2017), using angle-based approach, the
target displacement between leaders can be artificially specified
and does not have to satisfy a fixed length constraint.

Suppose agents l1 and l2 are leaders, l1, l2 ∈ V . Then p̃l1 − p̃l2
is the displacement of l1 and l2 in the formation with target
orientation and scale. Now we summarize the problem that we
will deal with in this subsection as below.

Problem 4.2. Given a realizable target formation (G, p∗) satisfy-
ing Assumption 4.1, and the target displacement p̃l1 − p̃l2 known
by agents l1 and l2, design a distributed control law for each agent
i based on the relative position measurements {pii − pij, j ∈ Ni},
such that EM is asymptotically stable.

To solve Problem 4.2, we consider the following set containing
the target equilibrium EM :

El = {p ∈ EF : pl1 − pl2 = p̃l1 − p̃l2}, (14)

where EF is in the form (9).
The following lemma shows that once (G, p∗) is infinitesimally

angle rigid, El and EM coincide near each point in EM .

Lemma 4.2. If (G, p∗) is infinitesimally angle rigid, then for any
q ∈ EM , there exists a neighborhood Uq of q, such that EM ∩ Uq =

El ∩ Uq.

Proof. Let fl(p) =
(

f (p)
pl1 − pl2

)
∈ R|T

F
G |+2, fM (p) = (. . . , (pi −

pj)T , . . .)T ∈ R2m, it follows that El = f −1l (fl(p̃)), EM = f −1M (fM (p̃)).
Since G must be connected, we have rank( ∂ fM

∂p ) = rank(H̄) =
2n − 2, here H̄ is the incidence matrix, according to Theorem 6,
EM is a 2-dimensional manifold.

Next we show El is also a 2-dimensional manifold near each
q ∈ EM . Without loss of generality, suppose pl1 − pl2 is consisted
of the (2k − 1)th row and 2kth row of H̄p. Let S = [Sij] ∈ R2×2m

be a matrix with S1,2k−1 = S2,2k = 1, and Sij = 0 for other i, j.
Then SH̄p = pl1 − pl2 and

∂(pl1−pl2 )
∂p = SH̄ . For any q ∈ EM ,

denote Rl(q) =
∂ fl
∂p |p=q= (RT

T F
G
(q), (SH̄)T )T , it is easy to obtain

null(Rl(q)) = null(RT F
G
(q)) ∩ null(SH̄). We first notice that (G, q)

must be infinitesimally angle rigid, implying null(RT F
G
(q)) = S ,

where S is the trivial motion space shown in Lemma 3.1. We
also note that null(SH̄) = (null(S)∩ range(H̄))∪ null(H̄). It can be
verified that null(Rl(q)) = S∩null(SH̄) = null(H̄) = span{1n⊗ I2}.
Then we obtain rank( ∂ fl

∂p |p=q) = 2n − 2 = max{rank( ∂ fl
∂p ) : p ∈

R2n
}, i.e., q is a regular point of fl. From Asimow and Roth (1978,

Proposition 2), there exists a neighborhood U of q, such that El∩U
is a 2-dimensional manifold. Together with EM ⊂ El, we have
EM ∩ U ⊂ El ∩ U . It follows that El ∩ Uq = EM ∩ Uq for some
Uq ⊂ U . □

By virtue of Lemma 4.2, when the initial positions of agents
are close to EM , to drive the agents into EM , it suffices to constrain
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Fig. 6. (a) Under control law (11), the agents asymptotically form a regular pentagon. (b) VF (t) vanishes to zero in an exponential speed.

Fig. 7. (a) Under control law (11), the agents with a set of random initial positions asymptotically form a shape distinct to regular pentagon. (b) VF (t) vanishes to
zero in an exponential speed.

pl1 − pl2 to be p̃l1 − p̃l2 while steering the agents to meet angle
constraints determined by T F

G . Therefore, we wish the agents to
cooperatively minimize the following cost function:

V = VF + VM , (15)

where VF is in form (10), VM =
1
2∥p̃l1 − p̃l2 − (pl1 − pl2 )∥

2.
We propose the following gradient-based control law:

ui = uF
i + uM

i = −∇piVF −∇piVM , i ∈ V (16)

where uF
i in form (11) is to drive agents to maintain the target

shape, uM
i is for controlling formation orientation and scale.

It is easy to see that the control law (16) is distributed and
uM
i = 0 for i ∈ V \ {l1, l2}. Under (16), property (i) in Lemma 4.1

also holds for the formation system, while (ii) in Lemma 4.1
becomes invalid. Moreover, during the evolution, the centroid is
still invariant, but the formation scale may be changed.

By an analysis similar to Sun et al. (2017), we can obtain the
following theorem.

Theorem 9. For a group of n ≥ 3 agents with dynamics (7) and
controller (16) moving in the plane. Under Assumption 4.1, EM is
locally exponentially stable.

5. Simulations

In this section, by considering 5 autonomous agents moving in
the plane, we present multiple numerical examples to illustrate
the effectiveness of the theoretical findings.

Example 5.1. Consider regular pentagon described by the frame-
work in Fig. 5(a) as the target formation shape (G, p∗). The set of
desired angle information should be {g∗T12 g

∗

13 = 0.8090, g∗T13 g
∗

14 =

0.8090, g∗T14 g
∗

15 = 0.8090, g∗T21 g
∗

23 = −0.3090, g
∗T
31 g
∗

34 = 0.3090,
g∗T41 g

∗

45 = 0.8090}. Note that G is a triangulated Laman graph, and
(G, p∗) is strongly nondegenerate. That is, Assumption 4.1 holds.
Without loss of generality, choose qi = (cos( 2π5 i), sin( 2π5 i))T , i =
1, . . . , 5. Then q = (qT1, . . . , q

T
n )

T
∈ E . Set the initial position

vector of the agents as p(0) = q + r , where r ∈ R10 is a per-
turbation, each component of r is a pseudorandom value drawn
from the uniform distribution on (−0.5, 0.5). By implementing
the control law (11), Fig. 6(a) is obtained, which shows that the
desired formation shape can be formed by our formation strategy.
Fig. 6(b) describes the evolution of VF (t), where VF (t) is in form
(10). It can be observed that VF (t) ≤ e−0.1tVF (0) for all t ≥ 0,
implying exponential convergence of the formation system. In
conclusion, the simulation result illustrates Theorem 8.

In fact, when we repeat the simulation by choosing other val-
ues of r in the same way as above, it can always be obtained that
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Fig. 8. (a) Under control law (11), the agents asymptotically form a shape distinct to a regular pentagon. (b) VF (t) vanishes to zero in an exponential speed.

Fig. 9. (a) Under control law (16), the regular pentagon formed by all agents is asymptotically transformed into another regular pentagon with desired orientation
and scale. (b) V (t) vanishes to zero exponentially.

VF vanishes to zero exponentially and the target formation shape
is eventually formed. Moreover, when we select each component
of r from the uniform distribution on (−1, 1), the target formation
shape can still be formed in most cases. In other cases, the angle
constraints can usually be satisfied with an exponentially fast
speed, i.e., VF vanishes to zero exponentially, whereas the target
formation shape is not eventually formed. This is because that T F

G
is not sufficient for (G, p∗) to be globally angle rigid. Note that the
edge length of the pentagon formed by q is 1.176, therefore, the
attraction region is sizable. In Fig. 7, the initial positions of agents
are randomly set, it is shown that all the angle constraints are
exponentially satisfied, but the agents form an incorrect shape.

Example 5.2. Consider the framework in Fig. 5(b) as the target
formation. According to (8), the set of desired angle informa-
tion should be {g∗T13 g

∗

14 = 0.8090, g∗T14 g
∗

15 = 0.8090, g∗T31 g
∗

34 =

0.3090, g∗T41 g
∗

45 = 0.8090}. Under the same initial condition as
in Example 5.1, although VF vanishes to zero exponentially, the
control law (11) cannot stabilize the target formation, as shown
in Fig. 8. This is because the angle constraints determined by T F

G
are not sufficient to determine angle rigidity of the framework.

Example 5.3. In this example, we control orientation and scale
of the formation formed in Example 5.1 by implementing the
control input (16). Let agents 3 and 4 be the two leaders. Now we

aim to drive the direction of p3−p4 to be horizontal with respect
to the global coordinate system, while setting the length of each
edge as 0.5. It suffices to set the target displacement between two
leaders as p̃3 − p̃4 = (−0.5, 0)T . Fig. 9 shows the trajectories of
agents and the evolution of V (t) in (15), in which we can observe
the validity of Theorem 9.

6. Conclusion

In this paper, we have developed an angle rigidity theory
to study when a framework in the plane can be determined
by angles uniquely up to translations, rotations, scalings and
reflections. We have also proved that the shape of a triangulated
framework can always be uniquely determined by angles. On
the basis of the proposed angle rigidity theory, a distributed
formation controller has been designed for formation shape sta-
bilization. We have proved that by implementing our control
strategy, a formation containing a strongly nondegenerate tri-
angulated framework is locally exponentially stable. Taking the
advantage of high degrees of freedom, we have proposed a dis-
tributed control strategy, which can drive agents to stabilize a
target formation shape with prescribed orientation and scale.

The angle rigidity theory proposed in this paper is only for
graphs in the plane, similar definitions can be easily extended to



G. Jing, G. Zhang, H.W.J. Lee et al. / Automatica 105 (2019) 117–129 127

higher dimensional spaces, but many properties of angle rigid-
ity in the plane may become invalid, because many theoretical
tools we have used cannot be directly applied to the higher
dimensional case. We leave the angle rigidity theory in higher
dimensional spaces as a future work.

Appendix A. Proof of Theorem 3

Necessity. Since null(RT ∗G ) = (null(Rg ) ∩ range(RB)) ∪ null(RB),
dim(null(RT ∗G )) reaches its minimum only if dim(null(RB)) is min-
imal. Recall that it always holds that null(RB) ⊇ Ss ∪ St , once
(G, p) is infinitesimally angle rigid, it must hold that null(RB(p)) =
Ss ∪ St . That is, (G, p) is infinitesimally bearing rigid.

Sufficiency. Note that RT ∗G = RgRB, and infinitesimal bearing
rigidity implies null(RB) = St ∪ Ss. To show null(RT ∗G ) = S , it

suffices to show that for any η ∈ null(Rg ) ∩ range(RB), we have
η = RBq for some q ∈ Sr .

Suppose η = RBv and Rgη = RgRBv = 0 for some v =

(vT
1 , . . . , vT

n )
T
∈ R2n. Let gT

ij gik be a component of fG such that

gij and gik are not collinear. Then RT ∗Gv = 0 implies that
∂gTij gik

∂g

diag( Pij
∥eij∥

)H̄v = 0, which is equivalent to

eTikPij(vi − vj)+ eTijPik(vi − vk) = 0. (17)

Note that for any nonzero vectors x, y ∈ R2, P(x)y is perpendicular
to x. Therefore, there always exist cij, cik ∈ R such that

Pij(vi − vj) = cijRo(
π

2
)gij, Pik(vi − vk) = cikRo(

π

2
)gik. (18)

It follows that

vi − vj = cijRo(
π

2
)gij + c ′ijgij,

vi − vk = cikRo(
π

2
)gik + c ′ikgik

(19)

for some c ′ij, c
′

ik ∈ R. Substituting (18) into (17), we have

cijeTikRo(
π

2
)gij + cikeTijRo(

π

2
)gik = 0.

Note also that RT
o (

π
2 ) = −Ro( π

2 ), then we have

(cij∥eik∥ − cik∥eij∥)gT
ij Ro(

π

2
)gik = 0.

Since gij and gik are not collinear, gT
ij Ro( π

2 )gik ̸= 0. It follows that
cij∥eik∥ = cik∥eij∥. That is, cij = cijk∥eij∥, cik = cijk∥eik∥ for some
cijk ∈ R. Together with (19), we have

vi − vj = cijkRo(
π

2
)eij + c̄ijeij,

vi − vk = cijkRo(
π

2
)eik + c̄ikeik,

(20)

where c̄ij = c ′ij/∥eij∥, c̄ik = c ′ik/∥eik∥.
So far we have proved that if (i, j, k) ∈ T ∗G and gij is not

collinear with gik, then (20) holds for some cijk ∈ R. In the
following, by constructing a T ∗G , we will show that there exists
a common constant c ∈ R such that vi− vj = cRo( π

2 )eij+ c̄ijeij for
all (i, j) ∈ E .

Now we construct a set T ∗G ⊆ TG such that gij and gik are not
collinear for all (i, j, k) ∈ T ∗G . Since (G, p) is infinitesimally bearing
rigid, from Lemmas 2.1 and 2.2, for any vertex i, there exist at
least two neighbors j, k ∈ Ni such that gij and gik are not collinear.
As a result, we can divide Ni into two sets N̂i and Ňi, such that for
any j ∈ N̂i and k ∈ Ňi, gij and gik are not collinear. We construct
a set iT ∗G by the following two steps:

Step 1. Select a vertex j1 ∈ N̂i randomly, let (i, j1, k)(if j1 < k) or
(i, k, j1)(if j1 > k) for all k ∈ Ňi be an element of iT ∗G .

Step 2. Select a vertex k1 ∈ Ňi randomly, let (i, j, k1)(if j < k1) or
(i, k1, j)(if j > k1) for all j ∈ N̂i \ {j1} be an element of iT ∗G .

Let T ∗G = ∪i∈V
iT ∗G . It is obvious that for any i, j, k ∈ T ∗G ,

gij and gik are not collinear. Now we regard each edge (i, j) of G
as a vertex of G′, (i, j) and (i, k) are adjacent if (i, j, k) or (i, k, j)
belongs to T ∗G . By our approach for construction of iT ∗G , it is easy
to see that for any i ∈ V and j, k ∈ Ni, (i, j) and (i, k) are
either adjacent or both neighbors of (i, j1) or (i, k1). Therefore, the
graph G′ corresponding to T ∗G is connected. We regard cij as the
state corresponding to (i, j) if vi − vj = cijRo( π

2 )eij + c̄ijeij. Note
that (20) implies that if (i, j) and (i, k) are adjacent, they share a
common state cijk ∈ R. Since G′ is connected, all edges in G′ have
a consensus state c ∈ R. That is, vi − vj = cRo( π

2 )eij + c̄ijeij for all
(i, j) ∈ E .

This implies that H̄v = c(Im ⊗ Ro( π
2 ))H̄p + C̄ H̄p, where C̄ =

diag(c̄ij)⊗ I2. Then

η = RBv = diag(
Pij
∥eij∥

)H̄v

= diag(
Pij
∥eij∥

)c(Im ⊗ Ro(
π

2
))(H ⊗ I2)p+ diag(

Pij
∥eij∥

)C̄ H̄p

= diag(
Pij
∥eij∥

)(H ⊗ I2)c(In ⊗ Ro(
π

2
))p

= RBc(In ⊗ Ro(
π

2
))p.

Since c(In ⊗ Ro( π
2 ))p ∈ Sr , the proof is completed.

Appendix B. Proof of Theorem 4

We first present some lemmas that are required to prove
Theorem 4.

In Dongarra, Moler, Bunch, and Stewart (1979), the authors
showed that for a positive semi-definite matrix A ∈ Rn×n with
rank(A) = r , if Π TAΠ = RTR for a specified permutation matrix
Π ∈ Rn×n, where R ∈ Rr×n, then this Cholesky decomposition is
unique. Here the uniqueness of Cholesky decomposition implies
that if R̄T R̄ = Π TAΠ for some R̄ ∈ Rr×n, then R = RR̄ for some
R ∈ O(2). It is straightforward to obtain the following lemma.

Lemma B.1. For a matrix R ∈ Rr×n with rank(R) = r, if RTR = R̄T R̄
for some R̄ ∈ Rr×n, then R = RR̄ for some R ∈ O(r).

Let Hx = H (x) ≜ I2 − 2xxT be a Householder transformation,
here x ∈ R2 is a unit vector. Geometrically, Hxy with y ∈ R2 is a
reflection of y about the vector which is perpendicular to x. We
list some easily checked properties of Hx in the following lemma.

Lemma B.2. For any given unit vectors x, y ∈ R2, Hx has the
following properties:

(i) H T
x = H , H 2

x = I2;
(ii) Hx = Re(θ ) for some θ ∈ [0, 2π );
(iii) For any θ ∈ [0, 2π ), there exists a unit vector z ∈ R2 such

that Hz = Re(θ );
(iv) The eigenspace of Hx associated with the eigenvalue 1 is

span{x⊥}.

With the aid of Lemma B.2, we can establish the following
result.

Lemma B.3. If Aη = Bη, where A, B ∈ O(2), and η ∈ R2 is a unit
vector, then A = B or A = BHη⊥ .



128 G. Jing, G. Zhang, H.W.J. Lee et al. / Automatica 105 (2019) 117–129

Proof. Note that a 2-dimensional orthogonal matrix is either a
rotation matrix or a reflection matrix. Without loss of generality,
we discuss the problem in three cases:

Case 1. A = Ro(α), B = Ro(β) for some α, β ∈ [0, 2π ). Then
Ro(α)η = Ro(β)η, implying Ro(α − β)η = η. Hence α − β = 0.
That is, A = B.

Case 2. A = Re(α), B = Re(β) for some α, β ∈ [0, 2π ). Following
the same procedure in Case 1, one can also obtain A = B.

Case 3. A = Ro(α), B = Re(β) = Ro(β)Ī for some α, β ∈ [0, 2π ).
Then Ro(α)η = Ro(β)Īη. It follows that η = Ro(β−α)Īη = Re(β−
α)η. From Lemma B.2(iii), there exists some x ∈ R2 such that
Hx = Re(β − α). That is, η = Hxη. Using (iv) in Lemma B.2, we
have η ∈ span{x⊥}. Then x = ±η⊥, Hx = Hη⊥ . As a result, Hη⊥ =

Re(β − α) = Ro(β − α)Ī , implying that Ro(α)Hη⊥ = Re(β). By (i)
in Lemma B.2, we have A = Ro(α) = Re(β)Hη⊥ = BHη⊥ . □

Let F denote a graph with 4 vertices and 5 edges, then the
following lemma holds.

Lemma B.4. (F, p) is infinitesimally bearing rigid if and only if p
is nondegenerate.

The necessity of Lemma B.4 is obvious. For sufficiency, it is
easy to see that F must be a triangulated Laman graph. Since
(L4, p) is strongly nondegenerate if and only if p is nondegen-
erate, from Lemma 3.3, (L4, p) is infinitesimally distance rigid.

With Lemmas B.1, B.2, B.3 and B.4 at hand, we now give the
proof for Theorem 4.

Proof of Theorem 4. We first note that (In⊗R)−1q ∈ B−1K (BK(p))
is equivalent to BK((In⊗R)−1q) = BK(p), which is also equivalent
to BK(q) = (Im ⊗ R)BK(p). Therefore, it suffices to show that
fK(q) = fK(p) if and only if BK(q) = (Im ⊗ R)BK(p).

Sufficiency. For any i, j, k ∈ V , it is straightforward that

gT
ij (q)gik(q) = gT

ij (p)R
TRgik(p) = gT

ij (p)gik(p).

To prove necessity, we consider the following two cases.

Case 1. The configuration p is degenerate. Let g̃ be a unit vector
such that g̃ is collinear with gij(p) for all i, j ∈ V , then gij(q) =
Rgij(p) if and only if gij(q) = RHg̃⊥(p)gij(p). For any i, j ∈ V ,
let Rij ∈ O(2) such that gij(q) = Rijgij(p). To prove necessity,
it suffices to show that for any distinct vertices i, j, k ∈ V , if
gij(q) = Rijgij(p) and gik(q) = Rikgik(p), there always holds
Rij = Rik or Rij = RikHg̃⊥(p). Without loss of generality, suppose
gij(p) = gik(p). Then gT

ij (q)gik(q) = gT
ij (p)gik(p) = 1, which holds if

and only if gij(q) = gik(q), i.e., Rijgij(p) = Rikgik(p) = Rikgij(p). By
Lemma B.3, Rij = Rik or Rij = RikHg⊥ij (p)

. Since Hg⊥ij (p)
= Hg̃⊥(p),

the proof is completed.

Case 2. The configuration p is nondegenerate. Note that K is
complete, hence each vertex i has at least two neighbors j and
k such that gij(p) and gik(p) are not collinear. Then we can divide
Ni into two sets N̂i and Ňi, such that for any j ∈ N̂i and k ∈
Ňi, gij(p) and gik(p) are not collinear. We first show that given
i ∈ V , for any j ∈ N̂i, k ∈ Ňi, l ∈ V \ {i, j, k}, it always
holds that Gijkl(q) = RijklGijkl(p) for some Rijkl ∈ O(2), where
Gijkl = (gij, gik, gil, gjk, gjl, gkl) ∈ R2×6.

Since K is complete, we have l ∈ Ni. Without loss of generality,
we consider l ∈ Ňi. For the triangle composed of i, j, k, let Gijk =

(gij, gik, gjk) ∈ R2×3. Since fK(q) = fK(p), we have GT
ijk(q)Gijk(q) =

GT
ijk(p)Gijk(p). Note that gij(p) and gik(p) are not collinear, thus we

have rank(Gijk(p)) = 2. By virtue of Lemma B.1, the Cholesky
decomposition of GT

ijk(p)Gijk(p) determines Gijk(p) up to a 2 × 2
orthogonal matrix Rijk. That is, Gijk(q) = RijkGijk(p). Similarly, we
have Gijl(q) = RijlGijl(p) for Rijl ∈ O(2). For vertices j, k, l, it follows

from Case 1 that Gjkl(q) = RjklGjkl(p) for Rjkl ∈ O(2) no matter
j, k, l are collinear or not. Since Rijkgij(p) = Rijlgij(p) = gij(q),
according to Lemma B.3, Rijk = Rijl or Rijk = RijlHg⊥ij (p)

.
Suppose that Rijk ̸= Rijl, then

gT
jk(p)gjl(p) = gT

jk(q)gjl(q)

= gT
jk(p)R

T
ijkRijlgjl(p)

= gT
jk(p)Hg⊥ij (p)

gjl(p)

= gT
jk(p)gjl(p)− 2gT

jk(p)g
⊥

ij (p)g
⊥T
ij (p)gjl(p).

This implies gT
jk(p)g

⊥

ij (p)g
⊥T
ij (p)gjl(p) = 0. Since gij(p) and gik(p) are

not collinear, gij(p) and gjk(p) are also not collinear. Similarly, gij(p)
and gjl(p) are not collinear. Thus a contradiction arises. We then
have Rijk = Rijl ≜ Rijkl, which implies that Ḡijkl(q) = RijklḠijkl(p),
where Ḡijkl = (gij, gik, gil, gjk, gjl) ∈ R2×5. Consider the framework
(F, q), where F is a graph with vertex set {i, j, k, l} and edge
set {(i, j), (i, k), (i, l), (j, k), (k, l)}. Since these four vertices are not
collinear, according to Lemma B.4, (F, q) is infinitesimally bearing
rigid, thus is globally bearing rigid. This implies that gkl(q) can be
uniquely determined by Ḡijkl(q). As a result, Gijkl(q) = RijklGijkl(p).

The above proof implies that given i ∈ V , we have

R ≜ Rijk = Rijl = Rikl = Rjkl

for any j ∈ N̂i, k ∈ Ňi, l ∈ V \ {i, j, k}. Note that any edge in
graph K is involved in a triangle including vertex i. Therefore,
gij(q) = Rgij(p) for any (i, j) ∈ E . □
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