
1

Asynchronous Distributed Reinforcement Learning for LQR Control
via Zeroth-Order Block Coordinate Descent

Gangshan Jing, He Bai, Jemin George, Aranya Chakrabortty and Piyush K. Sharma

Abstract

Recently introduced distributed zeroth-order optimization (ZOO) algorithms have shown their utility in distributed reinforce-
ment learning (RL). Unfortunately, in the gradient estimation process, almost all of them require random samples with the same
dimension as the global variable and/or require evaluation of the global cost function, which may induce high estimation variance
for large-scale networks. In this paper, we propose a novel distributed zeroth-order algorithm by leveraging the network structure
inherent in the optimization objective, which allows each agent to estimate its local gradient by local cost evaluation independently,
without use of any consensus protocol. The proposed algorithm exhibits an asynchronous update scheme, and is designed for
stochastic non-convex optimization with a possibly non-convex feasible domain based on the block coordinate descent method.
The algorithm is later employed as a distributed model-free RL algorithm for distributed linear quadratic regulator design, where
a learning graph is designed to describe the required interaction relationship among agents in distributed learning. We provide
an empirical validation of the proposed algorithm to benchmark its performance on convergence rate and variance against a
centralized ZOO algorithm.

Index Terms

Reinforcement learning, distributed learning, zeroth-order optimization, linear quadratic regulator, multi-agent systems

I. INTRODUCTION

Zeroth-order optimization (ZOO) algorithms solve optimization problems with implicit function information by estimating
gradients via zeroth-order observation (function evaluations) at judiciously chosen points [1]. They have been extensively
employed as model-free reinforcement learning (RL) algorithms for black-box off-line optimization [2], online optimization
[3], neural networks training [4], and model-free linear quadratic regulator (LQR) problems [5]–[8]. Although, ZOO algorithms
are applicable to a broad range of problems, they suffer from high variance and slow convergence rate especially when the
problem is of a large size. To improve the performance of ZOO algorithms, besides the classical one-point feedback [3], [6],
other types of estimation schemes have been proposed, e.g., average of multiple one-point feedback [5], two-point feedback [2],
[4], [6], [9], [10], average of multiple two-point feedback [8], and one-point residual feedback [11]. These methods have been
shown to reduce variance and increase convergence rate efficiently. However, all these methods are still based on the evaluation
of the global optimization objective, which may cause significantly large errors and high variance of gradient estimates when
encountering a large-size problem with a high dimensional variable.

Multi-agent networks are one of the most representative systems that have broad applications and usually induce large-
size optimization problems [12]. In recent years, distributed zeroth-order convex and non-convex optimizations on multi-agent
networks have been extensively studied, e.g., [13]–[17], all of which decompose the original cost function into multiple functions
and assign them to the agents. Unfortunately, the variable dimension for each agent is the same as that for the original problem.
As a result, the agents are expected to eventually reach consensus on the optimization variables. Such a setting indeed divides
the global cost into local costs, but the high variance of the gradient estimate caused by the high variable dimension remains
unchanged. In [18], each agent has a lower dimensional variable. However, to estimate the local gradient, the authors employed
a consensus protocol for each agent to estimate the global cost function value. Such a framework maintains a similar gradient
estimate to that of the centralized ZOO algorithm, which still suffers a high variance when the network is of a large scale.

Block coordinate descent (BCD) are known to be efficient for large-size optimization problems due to the low per-iteration
cost [19], [20]. The underlying idea is to solve optimizations by updating only partial components (one block) of the entire
variable in each iteration, [19]–[24]. Recently, zeroth-order BCD algorithms have been proposed to craft adversarial attacks for
neural networks [4], [25], where the convergence analysis was given under the convexity assumption on the objective function
in [25]. A non-convex optimization was addressed by a zeroth-order BCD algorithm in [26], whereas the feasible domain was
assumed to be convex.

In this paper, we consider a general stochastic locally smooth non-convex optimization with a possibly non-convex feasible
domain, and propose a distributed ZOO algorithm based on the BCD method. Out of the aforementioned situations, we design
local cost functions involving only partial agents by utilizing the network structure embedded in the optimization objective
over a multi-agent network. This is reasonable in model-free control problems because although the dynamics of each agent

G. Jing is with Chongqing University, Chongqing, 400044, PRC. jinggangshan@cqu.edu.cn
A. Chkarabortty is with North Carolina State University, Raleigh, NC 27695, USA. achakra2@ncsu.edu
H. Bai is with Oklahoma State University, Stillwater, OK 74078, USA. he.bai@okstate.edu
J. George and P. Sharma are with the DEVCOM Army Research Laboratory, Adelphi, MD 20783, USA.
{jemin.george.civ,piyush.k.sharma.civ}@army.mil

ar
X

iv
:2

10
7.

12
41

6v
3

 [
ee

ss
.S

Y
]

 2
5

O
ct

 2
02

2

2

is unknown, the coupling structure between different agents may be known and the control objective with an inherent network
structure is usually artificially designed. Our algorithm allows each agent to update its optimization variable by evaluating
a local cost independently, without requiring agents to reach consensus on their optimization variables. This formulation is
applicable to the distributed LQR control and many multi-agent cooperative control problems such as formation control [27],
network localization [28] and cooperative transportation [29], where the variable of each agent converges to a desired local set
corresponding to a part of the minimizer of the global cost function. Our main contributions are listed as follows.

(i). We propose a distributed accelerated zeroth-order algorithm with asynchronous sample and update schemes (Algorithm
2). The multi-agent system is divided into multiple clusters, where agents in different clusters evaluate their local costs
asynchronously, and the evaluations for different agents are completely independent. It is shown that with appropriate parameters,
the algorithm converges to an approximate stationary point of the optimization with high probability. The sample complexity
is polynomial with the reciprocal of the convergence error, and is dominated by the number of clusters (see Theorem 1). When
compared to ZOO based on the global cost evaluation, our algorithm produces gradient estimates with lower variance and thus
results in faster convergence (see the variance analysis in Subsection III-E).

(ii). We further consider a model-free multi-agent distributed LQR problem, where multiple agents with decoupled dynamics1

cooperatively minimize a cost function involving all the agents. The optimal LQR controller is desired to be distributed, i.e., the
control of each agent involves only its neighbors. We describe the couplings in the cost function and the structural constraint by
a cost graph and a sensing graph, respectively. To achieve distributed learning, we design a local cost function for each agent,
and introduce a learning graph that describes the required agent-to-agent interaction relationship for local cost evaluations.
Specifically, the local cost function for each agent is designed such that its gradient w.r.t. the local control gain is the same as
that of the global cost function. The learning graph is determined by the cost and sensing graphs and is needed only during the
learning stage. By implementing our asynchronous RL algorithm, the agents optimize their local costs and are able to learn a
distributed controller corresponding to a stationary point of the optimization distributively. The design of local costs and the
learning graph plays the key role in enabling distributed learning. The learning graph is typically denser than the cost and
sensing graphs, which is a trade-off for not using a consensus algorithm.

The comparisons between our work and existing related results are listed as follows.
(i). In comparison to centralized ZOO [2]–[4], [9], [11] and distributed ZOO [13]–[17], we reduce the variable dimension for

each agent, and construct local cost involving only partial agents. Such a framework avoids the influence of the convergence
error and convergence rate of the consensus algorithm, and results in reduced variance and high scalability to large-scale
networks. Moreover, since the agents do not need to reach agreement on any global index, our algorithm benefits for privacy
preserving.

(ii). In comparison to ZOO algorithms for LQR, e.g., [5], [6], [8], our problem has a structural constraint on the desired
control gain, thus the cost function is not gradient dominated.

(iii) Existing BCD algorithms in [19]–[24] always require global smoothness of the objective function. When only zeroth-
order information is available, existing BCD algorithms require convexity of either the objective function [25] or the feasible
domain [26]. In contrast, we propose a zeroth-order BCD algorithm for a stochastic non-convex optimization with a locally
smooth objective and a possibly non-convex feasible set. A clustering strategy and a cluster-wise update scheme are proposed
as well, which further significantly improve the algorithm convergence rate.

(iv) The distributed LQR problem is complicated and challenging because both the objective function and the feasible set
are non-convex, and the number of locally optimal solutions grow exponentially in system dimension [30], [31]. Existing
results for distributed LQR include model-based centralized approaches [32], [33], model-free centralized approaches [7],
[34], and model-free distributed approaches [18], [35]. All of them focus on finding a sub-optimal distributed controller for
an approximate problem or converging to a stationary point of the optimization via policy gradient. Therefore, the obtained
solutions may be a sub-optimal solution to the distributed LQR problem. Our algorithm is a derivative-free distributed policy
gradient algorithm, which also seeks a stationary point of the problem and yields a sub-optimal solution.

(v). The sample complexity of our algorithm is higher than that in [5], [6], [8] because their optimization problems have
the gradient domination property, and [5], [6] assume that the infinite horizon LQR cost can be obtained perfectly. The sample
complexity of our algorithm for LQR is slightly lower than that in [18]. However, two consensus algorithms are employed in
[18] for distributed sampling and global cost estimation, respectively, which may slow down the gradient estimation process
especially for large-scale problems. Moreover, the gradient estimation in [18] is essentially based on global cost evaluation,
while we adopt local cost evaluation, which improves the scalability to large-scale networks significantly.

(vi). Distributed RL has also been extensively studied via a Markov decision process (MDP) formulation, e.g., [36]–[40].
However, in comparison to our work, they require more information for each agent or are essentially based on global cost
evaluation. More specifically, in [36], [38]–[40], the global state is assumed to be available for all the agents. It has been
shown in [38] that naively applying policy gradient methods to multi-agent settings exhibits high variance gradient estimates.
[37] describes a distributed learning framework with partial observations, but only from an empirical perspective.

1Our algorithm applies to multi-agent systems with coupled dynamics. Please refer to Remark 4 for more details.

3

This paper is structured as follows. Section II describes the optimization problem. Section III presents our zeroth-order BCD
algorithm with convergence analysis. Section IV introduces the application of our algorithm to the model-free multi-agent LQR
problem. Section V shows asimulation example. Section VI concludes the whole paper.

Notations. Given function f(x) with x = (x>1 , ..., x
>
N)>, denote f(yi, x−i) = f(x′) with x′ = (x′>1 , ..., x

′>
N)>, x′i = yi and

x′j = xj for all j 6= i. Let Rn and R≥0 denote the n−dimensional Euclidean space and the space of nonnegative real numbers.
The norm ‖ · ‖ denotes the l2-norm for vectors, and denotes the spectral norm for matrices, ‖ · ‖F is the Frobenius norm. The
pair G = (V, E) denotes a directed or an undirected graph, where V is the set of vertices, E ⊂ V2 is the set of edges. A pair
(i, j) ∈ E implies that there exists an edge from i to j. A path from vertex i to vertex j in G is a sequence of pairs (i, i1),
(i1, i2), ..., (is, j) ∈ E . The symbol E[·] denotes expectation, Cov(x) denotes the covariance matrix of vector x. Given a set
S, Uni(S) represents the uniform distribution in S. Given two matrices X and Y , let 〈X,Y 〉 = trace(X>Y) be the Frobenius
inner product.

II. STOCHASTIC ZOO VIA MULTI-AGENT NETWORKS

In this section, we review the zeroth-order stochastic non-convex optimization problem and describe the optimization we
aim to solve in this paper.

A. Stochastic ZOO

Consider a general optimization problem
minimize
x∈X

f(x), (1)

where
f(x) = Eξ∼D[h(x, ξ)] (2)

is continuously differentiable, x ∈ Rq is the optimization variable, X is its feasible domain and possibly non-convex, ξ ∈ Rp
is a random variable and may denote the noisy data with distribution D in real applications, and h(·, ·) : Rq × Rp → R≥0 is
a mapping such that the following assumptions hold:

Assumption 1: We assume the following statements hold for f .
A: The function f is (λx, ζx) locally Lipschitz in X , i.e., for any x ∈ X , if ‖x′ − x‖ ≤ ζx for x′ ∈ Rq , then

‖f(x′)− f(x)‖ ≤ λx‖x′ − x‖, (3)

where λx and ζx are both continuous in x.
B: The function f has a (φx, βx) locally Lipschitz gradient in X , i.e., for any x ∈ X , if ‖x′−x‖ ≤ βx for x′ ∈ Rq , it holds

that
‖∇xf(x′)−∇xf(x)‖ ≤ φx‖x′ − x‖, (4)

where φx and βx are both continuous in x.
C: The function f is coercive, i.e., f(x) goes to infinity when x approaches the boundary of X .

The stochastic zeroth-order algorithm aims to solve the stochastic optimization (1) in the bandit setting, where one only has
access to a noisy observation, i.e., the value of h(x, ξ), while the detailed form of h(x, ξ) is unknown. Since the gradient of
f(x), i.e., ∇xf(x), can no longer be computed directly, it will be estimated based on the function value.

In the literature, the gradient can be estimated by the noisy observations with one-point feedback [3], [5], [6] or two-point
feedback [2], [4], [9]. In what follows, we introduce the one-point estimation approach, based on which we will propose our
algorithm. The work in this paper is trivially extendable to the two-point feedback case.

Define the unit ball and the (d− 1)-dimensional sphere (surface of the unit ball) in Rd as

Bd = {y ∈ Rd : ‖y‖ ≤ 1}, (5)

and
Sd−1 = {y ∈ Rd : ‖y‖ = 1}, (6)

respectively. Given a sample v ∼ Uni(Bq), define

f̂(x) = Ev∈Bq [f(x+ rv)], (7)

where r > 0 is called the smoothing radius. It is shown in [3] that

∇xf̂(x) = Eu∈Sq−1 [f(x+ ru)u]q/r, (8)

which implies that f(x+ ru)uq/r is an unbiased estimate for ∇xf̂(x). Based on this estimation, a first-order stationary point
of (1) can be obtained by using gradient descent.

4

B. Multi-Agent Stochastic Optimization

In this paper, we consider the scenario where optimization (1) is formulated based on a multi-agent system with N agents
V = {1, ..., N}. More specifically, let x = (x>1 , ..., x

>
N)>, where xi ∈ Rqi is the state of each agent i, and

∑N
i=1 qi = q.

Similarly, let ξ = (ξ>1 , ..., ξ
>
N)>, where ξi ∈ Rpi denotes the noisy exploratory input applied to agent i, and

∑N
i=1 pi = p.

Different agents may have different dimensional states and noise vectors, and each agent i only has access to a local observation
hi(xNi , ξNi), i = 1, ..., N . Here xNi = {xj , j ∈ Ni} and ξNi = {ξj , j ∈ Ni} are the vectors composed of the state and noise
information of the agents in Ni, respectively, where Ni = {j ∈ V : (j, i) ∈ E} contains its neighbors determined by the graph2

G = (V, E). Note that each vertex in graph G is considered to have a self-loop, i.e., i ∈ Ni. At this moment we do not impose
other conditions for G, instead, we give Assumption 2 on those local observations, based on which we propose our distributed
RL algorithm. In Section IV, when applying our RL algorithm to a model-free multi-agent LQR problem, the details about
how to design the inter-agent interaction graph for validity of Assumption 2 will be introduced.

Assumption 2: There exist local cost functions fi(x) = Eξ∼D[hi(xNi , ξNi)] such that for any i ∈ V and x ∈ X , hi(·, ·) :

R
∑
j∈Ni

qj × R
∑
j∈Ni

pj → R≥0 satisfies

hi(xNi , ξNi) ≤ cfi(x), almost surely (a.s.), (9)

and
∇xif(x) = ∇xifi(x). (10)

Remark 1: Inequality (9) is used to build a relationship between hi(x, ξ) and its expectation w.r.t. ξ. Note that (9) is the
only condition for the random variable ξ, and ξ does not necessarily have a zero mean. If hi(x, ξ) is continuous in ξ for any
x ∈ X , the assumption (9) holds when the random variable ξ is bounded. When ξ is unbounded, for example, ξ follows a
sub-Gaussian distribution, (9) may hold with a high probability, see [41]. A truncation approach can be used when evaluating
the local costs to ensure the boundedness of the observation if ξ follows a standard Gaussian distribution.

To show that Assumption 2 is reasonable, we give a class of feasible examples. Consider

h(x, ξ) =
∑

(i,j)∈E
Fij(xi, xj , ξi, ξj), ξi ∼ Di, (11)

where Fij(·, ·, ·, ·) : Rqi × Rqj × Rpi × Rpj is locally Lipschitz continuous and has a locally Lipschitz continuous gradient
w.r.t. xi and xj , E is the edge set of a graph characterizing the inter-agent coupling relationship in the objective function, and
Di for each i ∈ V is a bounded distribution with zero mean. By setting hi(xNi , ξNi) =

∑
j∈Ni Fij(xi, xj , ξi, ξj), Assumption

2 is satisfied. If we define the domain X = X1 × · · · × XN as a strategy set, the formulation (1) with (11) can be viewed as
a cooperative networking game [42], where xi is the decision variable of player i, each pair of players aim to minimize Fij ,
and ξi is the random effect on the observation of each player. Moreover, the objective function (11) has also been employed
in many multi-agent coordination problems [43] such as consensus [44] and formation control [27]. As a specific example,
consider Fij(xi, xj , ξi, ξj) = ‖xi + ξi − xj − ξj‖2. In this case, the objective is consensus where ξi and ξj model bounded
noise effects in the measurement of xi and xj , respectively.

A direct consequence of Assumption 2 is that fi(x) is locally Lipschitz continuous and has a locally Lipschitz continuous
gradient w.r.t. xi. Moreover, the two Lipschitz constants are the same as those of f(x).

In this paper, with the help of Assumption 2, we will propose a novel distributed zeroth-order algorithm, in which the local
gradient of each agent is estimated based upon the local observations hi’s directly. The problem we aim to solve is summarized
as follows:

Problem 1: Under Assumptions 1-2, given an initial state x0 ∈ X , design a distributed algorithm for each agent i based on
the local observation3 hi(x, ξ) such that by implementing the algorithm, the state x converges to a stationary point of f .

III. DISTRIBUTED ZOO WITH ASYNCHRONOUS SAMPLES AND UPDATES

In this section, we propose a distributed zeroth-order algorithm with asynchronous samples and updates based on an
accelerated zeroth-order BCD algorithm.

A. Block Coordinate Descent

A BCD algorithm solves for the minimizer x = (x>1 , ..., x
>
N)> ∈ Rq by updating only one block xi ∈ Rqi in each iteration.

More specifically, let bk ∈ V be the block to be updated at step k, and xk be the value of x at step k. An accelerated BCD
algorithm is shown below: {

xk+1
i = xki , i 6= bk,

xk+1
i = x̂ki − η∇xif(x̂ki , x

k
−i), i = bk,

(12)

2Here graph G can be either undirected or directed. In Section IV where our algorithm is applied to the LQR problem, graph G corresponds to the learning
graph.

3Since xNi is composed of partial elements of x, for symbol simplicity, we write the local cost function for each agent i as hi(x, ξ) and treat hi(·, ·) as
a mapping from Rq × Rp to R≥0 while keeping in mind that hi(x, ξ) only involves agent i and its neighbors.

5

where η > 0 is the step-size, x̂ki is the extrapolation determined by

x̂ki = xki + wki (xki − x
kprev
i), (13)

here wki ≥ 0 is the extrapolation weight to be determined, xkprevi is the value of xi before it was updated to xki .
Note that wki can be simply set as 0. However, it has been empirically shown in [23], [24] that having appropriate positive

extrapolation weights helps significantly accelerate the convergence speed of the BCD algorithm, which will also be observed
in our simulation results.

To avoid using the first-order information, which is usually absent in reality, we estimate ∇xif(x̂ki , x
k
−i) in (12) based on

the observation fi(x̂ki , x
k
−i), see the next subsection.

B. Gradient Estimation via Local Cost Evaluation

In this subsection, we introduce given x ∈ X , how to estimate ∇xif(x) based on fi(x). In the ZOO literature, ∇xf(x) is
estimated by perturbing state x with a vector randomly sampled from Sq−1. In order to achieve distributed learning, we expect
different agents to sample their own perturbation vectors independently. Based on Assumption 2, we have

∇xf(x) =



∇x1

f(x)
:

∇xN f(x)


 =



∇x1

f1(x)
:

∇xN fN (x)


 . (14)

Let

f̂i(x) = Evi∈Bqi [fi(xi + rivi, x−i)]

=

∫
riBqi

fi(xi + vi, x−i)dvi

V (riBqi)
,

(15)

where V (riBqi) is the volume of riBqi . Here f̂i(x) is always differentiable even when fi(x) is not differentiable. To approximate
∇xifi(x) for each agent i, we approximate ∇xi f̂i(x) by the following one-point feedback:

gi(x, ui, ξ) =
qi
ri
hi(xi + riui, x−i, ξ)ui, (16)

ui ∈ Uni(Sqi−1), ξ ∈ Rp is a random variable following the distribution D. Note that according to the definition of the local
cost function hi(x, ξ), gi(x, ui, ξ) may be only affected by partial components of ξ.

The following lemma shows that gi(x, ui, ξ) is an unbiased estimate of ∇xi f̂i(x).
Lemma 1: Given ri > 0, i = 1, ..., N , the following holds

∇xi f̂i(x) = Eui∈Sqi−1
Eξ∼D[gi(x, ui, ξ)]. (17)

Although ∇xi f̂i(x) 6= ∇xif(x), their error can be quantified using the smoothness property of f(x), as shown below.
Lemma 2: Given a point x ∈ Rq , if ri ≤ βx, then

‖∇xi f̂i(x)−∇xif(x)‖ ≤ φxri. (18)

Remark 2: Compared with gradient estimation based on one-point feedback, the two-point feedback

gi(x, ui, ξi) =
qi
ri

[hi(xi + riui, x−i, ξi)− hi(xi − riui, x−i, ξi)]ui

is recognized as a more robust algorithm with a smaller variance and a faster convergence rate [2], [4], [9]. In this work, we
mainly focus on how to solve an optimization via networks by a distributed zeroth-order BCD algorithm. Since the expectation
of the one-point feedback is equivalent to the expectation of the two-point feedback, our algorithm in this paper is extendable
to the two-point feedback case. Note that in the gradient estimation, the two-point feedback requires two times of policy
evaluation with the same noise vector, which may be unrealistic in practical applications.

C. Distributed ZOO Algorithm with Asynchronous Samplings

In this subsection, we propose a distributed ZOO algorithm with asynchronous sample and update schemes based on the
BCD algorithm (12) and the gradient approximation for each agent i. According to (16), we have the following approximation
for each agent i at step k:

gi(x̂
k
i , x

k
−i, u

k
i , ξ) =

qi
ri
hi(x̂

k
i + riku

k
i , x

k
−i, ξ

k)uki , (19)

where uki is uniformly randomly sampled from Sqi−1.
In fact, since hi(x, ξ) only involves the agents in Ni, it suffices to maintain the variables of the agents in Ni \ {i} invariant

when estimating the gradient of agent i. That is, in our problem, two agents are allowed to update their variables simultaneously

6

if they are not neighbors. This is different from a standard BCD algorithm where only one block of the entire variable is
updated in one iteration.

To achieve simultaneous update for non-adjacent agents, we decompose the set of agents V into s independent clusters (s
has an upper bound depending on the graph), i.e., V = ∪sj=1Vj , and

Vj1 ∩ Vj2 = ∅, ∀ distinct j1, j2 ∈ {1, ..., s} (20)

such that the agents in the same cluster are not adjacent in the interaction graph, i.e., (i1, i2) /∈ E for any i1, i2 ∈ Vj ,
j ∈ {1, ..., s}. Note that no matter graph G is directed or undirected, any two agents have to lie in different clusters if there is
a link from one to the other. Without loss of generality, we assume G is undirected, and let Ni be the neighbor set of agent i.
In the case when G is directed, we define Ni as the set of agents j such that (i, j) ∈ E or (j, i) ∈ E . A simple algorithm for
achieving such a clustering is shown in Algorithm 1. Note that the number of clusters obtained by implementing Algorithm 1
may be different each time. In practical applications, Algorithm 1 can be modified to solve for a clustering with maximum or
minimum number of clusters.

Algorithm 1 Non-Adjacent Agents Clustering
Input: V , Ni for i = 1, ..., N .
Output: s, Vj , j = 1, ..., s.

1. Set s = 0, C = ∅.
2. while C 6= V
3. Set s← s+ 1, D = C, while D 6= V
4. Randomly select i from V \ D, set Vs ← Vs ∪ {i}, D ← D ∪Ni.
5. end
6. C ← C ∪ Vs.
7. end

Algorithm 1 requires the global graph information as an input, thus is centralized. Nonetheless, Algorithm 1 is only
implemented in one shot, and there is no real-time global information required during its implementation. Therefore, Algorithm
1 can be viewed as an off-line centralized deployment before implementing the distributed policy seeking algorithm. Based
on the clustering obtained by Algorithm 1, we propose Algorithm 2 as the asynchronous distributed zeroth-order algorithm.
Algorithm 2 can be viewed as a distributed RL algorithm where different clusters take actions asynchronously, different agents
in one cluster take actions simultaneously and independently. In Algorithm 2, step 5 can be viewed as policy evaluation for
agent i, while step 6 corresponds to policy iteration. Moreover, the local observation hi(x̂ki + riu

k
i , x

k
−i, ξ

k) can be viewed as
the reward returned by the environment to agent i.

Algorithm 2 Distributed Zeroth-Order Algorithm with Asynchronous Samplings
Input: Step-size η, smoothing radius ri and variable dimension qi, i = 1, ..., N , clusters Vj , j = 1, ..., s, iteration number T , update order
zk (the index of the cluster to be updated at step k) and extrapolation weight wk

i , k = 0, ..., T − 1, initial point x0 ∈ X .
Output: x(T).

1. for k = 0, 1, ..., T − 1 do
2. Sample ξk ∼ D.
3. for all i ∈ V do
4. if i ∈ Vzk do (Simultaneous Implementation)
5. Agent i computes x̂ki by (13), samples uk

i randomly from Sqi−1 and observes hi(x̂
k
i + riu

k
i , x

k
−i, ξ

k).
6. Agent i computes the estimated local gradient gi(x̂ki , x

k
−i, u

k
i , ξ

k) according to (19). Then updates its policy:

xk+1
i = x̂ki − ηgi(x̂ki , xk−i, u

k
i , ξ

k). (21)

7. else
8.

xk+1
i = xki . (22)

9. end
10. end
11. end

In the literature, BCD algorithms have been studied with different update orders such as deterministically cyclic [21], [23]
and randomly shuffled [22], [26]. In this paper, we adopt an “essentially cluster cyclic update” scheme, which includes the
standard cyclic update as a special case, and is a variant of the essentially cyclic update scheme in [23], [24], see the following
assumption.

Assumption 3: (Essentially Cluster Cyclic Update) Given integer T0 ≥ s, for any cluster j ∈ {1, ..., s} and any two steps
k1 and k2 such that k2 − k1 = T0 − 1, there exists k0 ∈ [k1, k2] such that zk0 = j.

Assumption 3 implies that each cluster of agents update their states at least once during every consecutive T0 steps. When
|Vi| = 1 for i = 1, ..., s, and s = N , Assumption 3 implies an essentially cyclic update in [23], [24].

7

𝑥! + 𝑟!𝑢!
𝑥"

𝑥#

ℎ#

𝑥!

ℎ$

Global Cost

𝑥# + 𝑟#𝑢#

Local Cost 1 Local Cost 2 Local Cost 3

𝑥" + 𝑟"𝑢"

ℎ"

𝑥!

Agent 3 Agent 4

𝑥$ + 𝑟$𝑢$

𝑥#

Agent 1 Agent 2

Step k

Step k+1

ℎ!
Agent 3 Agent 4

𝑔$(𝑥, 𝑢$, 𝜉)

𝑔#(𝑥, 𝑢#, 𝜉)

𝑔!(𝑥, 𝑢!, 𝜉)

𝑔"(𝑥, 𝑢", 𝜉)

Agent 1 Agent 2

Local Cost 2

𝑢#

Agent 2 Agent 4

𝑢"

Local Cost 4

Update 𝑥$
Update

𝑢$ 𝑢!

Local Cost 4

Action Action

Action Action

Update Update

Fig. 1. The architecture of distributed RL via asynchronous actions during two consecutive iterations.

To better understand Algorithm 2, let us look at a multi-agent coordination example.
Example 1: Suppose that the global function to be minimized is (11) with E = {(1, 2), (2, 3), (3, 4)} being the edge set.

Then the local cost function for each agent is:

h1 = F (x1, x2, ξ12), h2 = F (x1, x2, ξ12) + F (x2, x3, ξ23),

h3 = F (x2, x3, ξ23) + F (x3, x4, ξ34), h4 = F (x3, x4, ξ34),
(23)

where ξij is a bounded zero-mean noise. By implementing Algorithm 1, the two clusters obtained are V1 = {1, 3} and
V2 = {2, 4}. By implementing Algorithm 2 with two clusters updating alternatively, the diagram for two consecutive iterations
is shown in Fig. 1, where agents in V1 and V2 take their actions successively. In multi-agent coordination, F (xi, xj , ξij) can
be set as (‖xi − xj + ξij‖2 − d2

ij)
2 for distance-based formation control (dij is the desired distance between agents i and j),

and ‖xi−xj + ξij −hij‖2 for displacement-based formation control (hij is the desired displacement between agents i and j).

D. Convergence Result

We study the convergence of Algorithm 2 by focusing on x ∈ X, where X is defined as

X = {x ∈ RnN : f(x) ≤ αf(x0), fi(x) ≤ αifi(x0),∀ i ∈ V} ⊆ X , (24)

where α, αi > 1, i ∈ V , x0 ∈ X is the given initial condition. Since f(x) is continuous and coercive, the set X is compact.
Then we are able to find uniform parameters feasible for f(x) over X:

φ0 = sup
x∈X

φx, λ0 = sup
x∈X

λx, ρ0 = inf
x∈X
{βx, ζx}. (25)

The following theorem shows an approximate convergence result based on establishing the probability of the event {xk ∈ X}
for k = 0, ..., T − 1. Let Ni denote the number of agents in the cluster containing agent i. For notation simplicity, we denote
N0 = maxi∈V Ni = maxj∈{1,...,s} |Vj |, q+ = maxi∈V qi, r− = mini∈V ri, f0(x0) = maxi∈V αifi(x0).

Theorem 1: Under Assumptions 1-2, given positive scalars ε, ν, γ, and α ≥ 2 + γ + 1
ν + νγ, x0 ∈ X . Let {xk}T−1

k=0 be a
sequence of states obtained by implementing Algorithm 2 for k = 0, ..., T − 1. Suppose that

T = d2ανf(x0)

ηε
e, η ≤ min{ ρ0

2δ
√
N0

,
2αf(x0)

γε
,

γε

2αN0(φ0δ2 + 4φ2
0 + φ0 + 4)

},

wki ≤
1

‖xki − x
kprev
i ‖

min{η3/2,
ρ0

2
√
Ni
}, ri ≤ min{ρ0

2
,

1

2φ0

√
γε

αN0
}, i ∈ V,

(26)

where δ = q+
r−
c
[
f0(x0) + λ0ρ0

]
is the uniform bound on the estimated gradient (as shown in Lemma 6). The following

statements hold.
(i). The following inequality holds with a probability at least 1− 1

α (2 + γ + 1
ν + νγ):

1

T

T−1∑

k=0

∑

i∈Vzk

‖∇xif(xk)‖2 < ε. (27)

8

(ii). Under Assumption 3, suppose that there exists some ε̄ ∈ (0, ρ0] such that

wki ≤
ε̄

2(T0 − 1)Ni‖xki − x
kprev
i ‖

, η ≤ ε̄

2δ(T0 − 1)N0
, (28)

for any step k ∈ {0, ..., T − 1}, and conditions in (26) are satisfied, then the following holds with a probability at least
1− 1

α (2 + γ + 1
ν + νγ):

1

T

T−1∑

k=0

‖∇xf(xk)‖2 < ε̂. (29)

where ε̂ = 2T0(ε+ φ2
0ε̄

2).
Approximate Convergence. Given positive scalars ε α, γ, and ν, Theorem 1 (i) implies that Algorithm 2 converges to a

sequence {xk}, where the partial derivative of xk w.r.t. one cluster is close to 0 at each step with high probability. When
s = 1, Algorithm 2 reduces to an accelerated zeroth-order gradient descent algorithm, and Theorem (i) implies convergence
to a ε-accurate stationary point with high probability. Theorem 1 (ii) implies that under an “essentially cluster cyclic update”
scheme, Algorithm 2 converges to a ε̂-accurate stationary point if the extrapolation weight wki and the step-size η are both
sufficiently small.

Convergence Probability. The convergence probability can be controlled by adjusting parameters α, γ and ν. Statements
in a similar nature have appeared in literature (see e.g., [18, Theorem 1]). However, instead of giving an explicit probability,
we can use ν and γ to adjust the probability. For example, set α = 20, γ = 1, ν = 1, then the probability is at least
1− 1/4 = 3/4. To achieve a high probability of convergence, it is desirable to have large α and ν, and small γ, which implies
that the performance of the algorithm can be enhanced at the price of adopting a large number of samples. As shown in (26),
for a given ε and a sufficiently large α, γ is used to control the step-size η and the sampling radius ri while ν is used to
control the total number of iterations.

Sample Complexity. To achieve high accuracy of the convergent result, we consider ε as a small positive scalar such that
ε � 1/ε. As a result, the sample complexity for convergence of Algorithm 2 is T ∼ O(q2

+N
2
0 /ε̂

3). This implies that the
required iteration number mainly depends on the highest dimension of the variable for one agent, the largest size of one
cluster, and the number of clusters (because T0 ≥ s). Note that even when the number of agents increases, q+ may remain
the same, implying high scalability of our algorithm to large-scale networks. Moreover, N0 may increase as the number of
clusters s decreases. Hence, there is a trade-off between the benefits of minimizing the largest cluster size against minimizing
the number of clusters. When the network is of large scale, T0 dominates the sample complexity, which makes minimizing the
number of clusters the optimal clustering strategy. Note that the sample complexity is directly associated with the convergence
accuracy. Analysis with diminishing step-sizes is of interest and may help achieve asymptotic convergence of the gradient.

Theorem 1 provides sufficient conditions for Algorithm 2 to converge. The objective of the analysis is to identify the range of
applicability of the proposed algorithm and establish the qualitative behaviors of the algorithms, rather than providing optimal
choices of algorithmic parameters. Some of the parameters, such as the Lipschitz constants, have analytical expressions in the
model-based setting (see e.g., [33]). However, they are indeed difficult to obtain in the model-free setting. Therefore, in our
experiments, we choose small step-sizes empirically to ensure that the cost function decreases over time.

E. Variance Analysis

In this subsection, we analyze the variance of our gradient estimation strategy and make comparisons with the gradient
estimation via global cost evaluation. Without loss of generality, we analyze the estimation variance for the i-th agent. Let
ui ∼ Uni(Sqi−1), z ∼ Uni(Sq−1), and zi ∈ Rqi be a component of z corresponding to agent i. Under the same smoothing
radius r > 0, one time gradient estimates based on the local cost hi and the global cost h are

gl =
qi
r
hi(xi + rui, x−i, ξ)ui, (30)

and
gg =

q

r
h(x+ rz, ξ)zi, (31)

respectively.
Lemma 3: The covariance matrices for the gradient estimates (30) and (31) are

Cov(gl) =
qi
r2

[
E[h2

i (x, ξ)]Iqi − E[∇xihi(x, ξ)]E>[∇xihi(x, ξ)] +O(r2)
]
, (32)

and
Cov(gg) =

q

r2

[
E[h2(x, ξ)]Iqi − E[∇xih(x, ξ)]E>[∇xih(x, ξ)] +O(r2)

]
, (33)

respectively.

9

Due to Assumption 2, the difference between two covariance matrices is

Cov(gg)− Cov(gl) =
1

r2


 ∑

j∈V\{i}
qjE[h2(x, ξ)]Iqi + qiE[h2(x, ξ)− h2

i (x, ξ)]Iqi +O(r2)


 , (34)

where the first term is positive definite as long as there are more than one agent in the network, the second term is usually
positive semi-definite, and the third term is negligible if r is much smaller than h(x, ξ).

Observe that the first two terms may have extremely large traces if the network is of large scale. This implies that the
gradient estimate (30) leads to a high scalability of our algorithm to large-scale network systems.

IV. APPLICATION TO DISTRIBUTED RL OF MODEL-FREE DISTRIBUTED MULTI-AGENT LQR

In this section, we will show how Algorithm 2 can be applied to distributively learning a sub-optimal distributed controller
for a linear multi-agent system with unknown dynamics.

A. Multi-Agent LQR

Consider the following MAS with decoupled agent dynamics4:

xi(t+ 1) = Aixi(t) +Biui(t), i = 1, ..., N (35)

where xi ∈ Rn, ui ∈ Rm, Ai and Bi are assumed to be unknown. The entire system dynamics becomes

x(t+ 1) = Ax(t) + Bu(t). (36)

By considering random agents’ initial states, we study the following LQR problem:

min
K

J(K) = E

[∞∑

t=0

γtx>(t)(Q+K>RK)x(t)

]

s.t. x(t+ 1) = (A− BK)x(t), x(0) ∼ D,
(37)

here 0 < γ ≤ 1, D is a distribution such that x(0) is bounded and has a positive definite second moment Σx = E[x(0)x>(0)],
Q = G � Q̃ with G ∈ RN×N � 0, Q̃ ∈ RnN×nN � 0, and the symbol � denoting the Khatri-Rao product, and R =
diag{R1, ..., RN} � 0. Note that while we assume that the agents’ dynamics are unknown, the matrices Q and R are
considered known. This is reasonable because in reality Q and R are usually artificially designed. It has been shown in [6] that
when 0 < γ < 1, the formulation (37) is equivalent to the LQR problem with fixed agents’ initial states and additive noises
in dynamics, where the noise follows the distribution D. Hence, our results are extendable to LQR with noisy dynamics.

When γ ∈ (0, 1), let y(0) = x(0), and y(t + 1) =
√
γ(A − BK)y(t), then we have y(t) = γt/2x(t). It follows that

J(K) = E[
∑∞
t=0 y

>(t)(Q+K>RK)y(t)]. This implies that J(K) remains the same as that for γ = 1 by replacing A and B
in system dynamics (36) with

√
γA and

√
γB. Hence, we define the following set:

Ks = {K ∈ RmN×nN :
√
γ(A− BK) is Schur Stable}. (38)

Note that any K ∈ Ks always renders J(K) finite because a Schur stabilizing gain always renders J(K) with γ = 1 finite.
Based on [33, Lemma 3.7] and [6, Lemmas 4, 5], we give some properties of J(K) in the following lemma.
Lemma 4: The cost function J(K) in (37) has the following properties:
(i) J(K) is coercive in the sense that J(K)→∞ if K → ∂Ks;
(ii) For any K ∈ Ks, there exist continuous positive parameters λK , ζK , φK and βK such that the cost function J(K) in

(37) is (λK , ζK) locally Lipschitz continuous and has a (φK , βK) locally Lipschitz continuous gradient.
Based on the matrix G, we define the cost graph interpreting inter-agent coupling relationships in the cost function.
Definition 1: (Cost Graph) The cost graph GC = (V, EC) is an undirected graph such that Gij 6= 0 if and only if (i, j) ∈ EC .

The neighbor set of agent i in the cost graph is defined as N i
C = {j ∈ V : (i, j) ∈ EC}.

Distributed control implies that each agent only needs to sense state information of its local neighbors. Next we define
sensing graph interpreting required inter-agent sensing relationships for distributed control.

Definition 2: (Sensing Graph) The sensing graph GS = (V, ES) is a directed graph with each agent having a self-loop. The
neighbor set for each agent i in graph GS is defined as N i

S = {j ∈ V : (j, i) ∈ ES}, where (j, i) ∈ ES implies that agent i has
access to xj .

Notes for the cost graph and the sensing graph.

4Decoupled agent dynamics is common for multi-agent systems, e.g., a group of robots. Our results are extendable to the case of coupled dynamics. In
that case, the coupling relationship in agents’ dynamics has to be taken into account in the design of the local cost function and the learning graph in next
subsection. The details are explained in Remark 4.

10

• The cost graph GC is determined by the prespecified cost function, and is always undirected becuase Q is positive
semi-definite.

• We assume GC is connected. Note that if GC is disconnected, then the performance index in (37) can be naturally
decomposed according to those connected components, and the LQR problem can be transformed to smaller sized LQR
problems.

• In real applications, the sensing graph is designed based on the sensing capability of each agent. It is even not necessarily
weakly connected.

• Here the cost graph GC and the sensing graph GS are defined independently. In specific applications, they can be either
related to or independent of each other.

Let X(i, j) ∈ Rm×n be a submatrix of X ∈ RmN×nN consisting of elements of X on (i− 1)m+ 1-th to im-th rows and
(j − 1)n+ 1-th to jn-th columns. The space of distributed controllers is then defined as

Kd = {X ∈ RmN×nN : X(i, j) = 0m×n if j /∈ N i
S , i, j ∈ V}. (39)

We make the following assumption to guarantee that the distributed LQR problem is solvable.
Assumption 4: Kd ∩Ks 6= ∅.
We aim to design a distributed RL algorithm for agents to learn a sub-optimal distributed controller K∗ ∈ Kd such that

during the learning process, each agent only requires information from partial agents (according to the sensing graph), and
takes actions based on the obtained information.

B. Local Cost Function and Learning Graph Design

We have verified Assumption 1 in Lemma 4. To apply Algorithm 2, it suffices to find local cost functions such that
Assumption 2 holds. In this subsection, we propose an approach to design of such local cost functions.

Note that the cost function can be written as a function of K:

J(K) = E

[∞∑

t=0

γtx>(t)(Q+K>RK)x(t)

]

= E

[∞∑

t=0

γtx>(0)(A− BK)t>(Q+K>RK)(A− BK)tx(0)

]
.

(40)

Let K = [K>1 , ...,K
>
N]> ∈ RmN×nN . Then Ki ∈ Rm×nN is the local gain matrix to be designed for agent i. Based on the

definition of Kd in (39), the distributed controller for each agent i has the form:

ui = −Kix = −K̃ixN iS , (41)

where K̃i ∈ Rm×ni with ni = |N i
S |n. We now view the control gain Ki for each agent i as the optimization variable.

According to Assumption 2, we need to find a local cost Ji(K) for each agent i such that its gradient is the same as the
gradient of the global cost w.r.t. Ki. That is, ∇KiJi(K) = ∇KiJ(K).

To design the local cost Ji for each agent i, we define the following set including all the agents whose control inputs and
states will be affected by agent i during the implementation of the distributed controller:

ViS = {j ∈ V : A path from i to j exists in GS}. (42)

Since different agents are coupled in the cost function, when extracting the local cost function involving an agent j ∈ ViS from
the entire cost function, all of its neighbors in the cost graph (i.e., N j

C) should be taken into account. Based on the set ViS for
each agent i, we formulate the following feasibility problem for each agent i ∈ V:

find Mi ∈ RN×N

s.t. Mi[j, k] = Gjk, for all k ∈ N j
C , j ∈ ViS ,

Mi[j, k] = 0, k ∈ V \ ∪j∈ViSN
j
C ,

(43)

where Mi[j, k] is the element of matrix Mi on the j-th row and k-th column.
The solution Mi to (43) must satisfy

∂(x>(Mi � Q̃)x)

∂xj
=
∂(x>(G� Q̃)x)

∂xj
for all j ∈ ViS . (44)

Moreover, we observe that the solution Mi ∈ RN×N is actually the matrix with the same principal submatrix associated
with ∪j∈ViSN

j
C as G, and all the other elements of Mi are zeros. Then Mi � 0 because all the principal minors of Mi are

nonnegative.

11

<latexit sha1_base64="A67acRxV7ugOEW9NdPP6PN33svQ=">AAACPHicbVDPSyMxGM3o6mr9sV09eglbhIpQZorsehEKIghedHdbhWYsmTTThiaZIflmaRnmD/PiH+HNkxcPyrLXPW/azmH98SDw8t73kbwXpVJY8P17b2Hxw9Lyx5XVytr6xuan6uetjk0yw3ibJTIxVxG1XArN2yBA8qvUcKoiyS+j0fHUv/zFjRWJ/gmTlIeKDrSIBaPgpF71B1EUhlGcnxRE8hi6xGaql8ORX1wToWOYkAFVil7nBJK0wOOS1GGvfrF/Vt6+n+2NnUKMGAwh7FVrfsOfAb8lQUlqqMR5r3pH+gnLFNfAJLW2G/gphDk1IJjkRYVklqeUjeiAdx3VVHEb5rPwBd51Sh/HiXFHA56p/2/kVFk7UZGbnEa1r72p+J7XzSA+DHOh0wy4ZvOH4kxiSPC0SdwXhjOQE0coM8L9FbMhNZSB67viSgheR35LOs1G8LXRvDiotZplHStoB31BdRSgb6iFTtE5aiOGbtADekLP3q336P32/sxHF7xyZxu9gPf3Hwrhr64=</latexit>

E

" 1X

t=0

�>x>(t)(Q + K>RK)x(t)

#

Cost Graph

Desired Structure in
<latexit sha1_base64="wFRH0MtpXW9f9h6X0Nh+MoRqkn0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeCF8FLC7YW2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBax6gRUo+ASW4YbgZ1EIY0CgQ/B+GbmPzyh0jyW92aSoB/RoeQhZ9RYqXnXL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/mx86JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZfU0GXCEzYmIJZYrbWwkbUUWZsdmUbAje8surpF2repfVWvOiUq/lcRThBE7hHDy4gjrcQgNawADhGV7hzXl0Xpx352PRWnDymWP4A+fzB59/jMY=</latexit>

K

Sensing Graph

Learning Graph

Required Interactions in Learning

Fig. 2. Summary of definitions for the cost, sensing, and learning graphs.

1

2

3

41

2

3

4
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

23

4

5

6

7 8

9

10

1

23

4

5

6

7 8

9

10

1

23

4

5

6

7 8

9

10

<latexit sha1_base64="ytkj8gg5F4NstHNSzVQik9EMN38=">AAAB9HicbVBNTwIxFHyLX4hfqEcvjcSEE9klRj2SeNAjRkES2JBu6UJDt13bLgnZ8Du8eNAYr/4Yb/4bu7AHBSdpMpl5L286QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEEdoikkvVCbCmnAnaMsxw2okVxVHA6WMwvs78xwlVmknxYKYx9SM8FCxkBBsr+b0ImxHBPL2Z9e/75Ypbc+dAq8TLSQVyNPvlr95AkiSiwhCOte56bmz8FCvDCKezUi/RNMZkjIe0a6nAEdV+Og89Q2dWGaBQKvuEQXP190aKI62nUWAns5B62cvE/7xuYsIrP2UiTgwVZHEoTDgyEmUNoAFTlBg+tQQTxWxWREZYYWJsTyVbgrf85VXSrte8i1r97rzSqOZ1FOEETqEKHlxCA26hCS0g8ATP8ApvzsR5cd6dj8Vowcl3juEPnM8f1PaSEA==</latexit>GS

<latexit sha1_base64="QNM5eagTZ3Qv8E5YiH9b+7adjnw=">AAAB9HicbVBNTwIxFHzFL8Qv1KOXRmLCiewSox5JOOgREwET2JBu6UJDt7u2XRKy4Xd48aAxXv0x3vw3dmEPCk7SZDLzXt50/FhwbRznGxU2Nre2d4q7pb39g8Oj8vFJR0eJoqxNIxGpR59oJrhkbcONYI+xYiT0Bev6k2bmd6dMaR7JBzOLmReSkeQBp8RYyeuHxIwpEentfNAclCtOzVkArxM3JxXI0RqUv/rDiCYhk4YKonXPdWLjpUQZTgWbl/qJZjGhEzJiPUslCZn20kXoOb6wyhAHkbJPGrxQf2+kJNR6Fvp2MgupV71M/M/rJSa48VIu48QwSZeHgkRgE+GsATzkilEjZpYQqrjNiumYKEKN7alkS3BXv7xOOvWae1Wr319WGtW8jiKcwTlUwYVraMAdtKANFJ7gGV7hDU3RC3pHH8vRAsp3TuEP0OcPvLaSAA==</latexit>GC

<latexit sha1_base64="1Mlfir4sWJ6zBuYm0RdtNQBz8Dc=">AAAB9HicbVBNSwMxFHypX7V+VT16CRahp7JbRD0WPOjBQwVbC+1Ssmm2Dc1m1yRbKEt/hxcPinj1x3jz35ht96CtA4Fh5j3eZPxYcG0c5xsV1tY3NreK26Wd3b39g/LhUVtHiaKsRSMRqY5PNBNcspbhRrBOrBgJfcEe/fF15j9OmNI8kg9mGjMvJEPJA06JsZLXC4kZUSLSm1n/rl+uODVnDrxK3JxUIEezX/7qDSKahEwaKojWXdeJjZcSZTgVbFbqJZrFhI7JkHUtlSRk2kvnoWf4zCoDHETKPmnwXP29kZJQ62no28kspF72MvE/r5uY4MpLuYwTwyRdHAoSgU2EswbwgCtGjZhaQqjiNiumI6IINbanki3BXf7yKmnXa+5FrX5/XmlU8zqKcAKnUAUXLqEBt9CEFlB4gmd4hTc0QS/oHX0sRgso3zmGP0CfP8pakgk=</latexit>GL

 (a) (b) (c)

<latexit sha1_base64="ytkj8gg5F4NstHNSzVQik9EMN38=">AAAB9HicbVBNTwIxFHyLX4hfqEcvjcSEE9klRj2SeNAjRkES2JBu6UJDt13bLgnZ8Du8eNAYr/4Yb/4bu7AHBSdpMpl5L286QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEEdoikkvVCbCmnAnaMsxw2okVxVHA6WMwvs78xwlVmknxYKYx9SM8FCxkBBsr+b0ImxHBPL2Z9e/75Ypbc+dAq8TLSQVyNPvlr95AkiSiwhCOte56bmz8FCvDCKezUi/RNMZkjIe0a6nAEdV+Og89Q2dWGaBQKvuEQXP190aKI62nUWAns5B62cvE/7xuYsIrP2UiTgwVZHEoTDgyEmUNoAFTlBg+tQQTxWxWREZYYWJsTyVbgrf85VXSrte8i1r97rzSqOZ1FOEETqEKHlxCA26hCS0g8ATP8ApvzsR5cd6dj8Vowcl3juEPnM8f1PaSEA==</latexit>GS

<latexit sha1_base64="QNM5eagTZ3Qv8E5YiH9b+7adjnw=">AAAB9HicbVBNTwIxFHzFL8Qv1KOXRmLCiewSox5JOOgREwET2JBu6UJDt7u2XRKy4Xd48aAxXv0x3vw3dmEPCk7SZDLzXt50/FhwbRznGxU2Nre2d4q7pb39g8Oj8vFJR0eJoqxNIxGpR59oJrhkbcONYI+xYiT0Bev6k2bmd6dMaR7JBzOLmReSkeQBp8RYyeuHxIwpEentfNAclCtOzVkArxM3JxXI0RqUv/rDiCYhk4YKonXPdWLjpUQZTgWbl/qJZjGhEzJiPUslCZn20kXoOb6wyhAHkbJPGrxQf2+kJNR6Fvp2MgupV71M/M/rJSa48VIu48QwSZeHgkRgE+GsATzkilEjZpYQqrjNiumYKEKN7alkS3BXv7xOOvWae1Wr319WGtW8jiKcwTlUwYVraMAdtKANFJ7gGV7hDU3RC3pHH8vRAsp3TuEP0OcPvLaSAA==</latexit>GC

<latexit sha1_base64="1Mlfir4sWJ6zBuYm0RdtNQBz8Dc=">AAAB9HicbVBNSwMxFHypX7V+VT16CRahp7JbRD0WPOjBQwVbC+1Ssmm2Dc1m1yRbKEt/hxcPinj1x3jz35ht96CtA4Fh5j3eZPxYcG0c5xsV1tY3NreK26Wd3b39g/LhUVtHiaKsRSMRqY5PNBNcspbhRrBOrBgJfcEe/fF15j9OmNI8kg9mGjMvJEPJA06JsZLXC4kZUSLSm1n/rl+uODVnDrxK3JxUIEezX/7qDSKahEwaKojWXdeJjZcSZTgVbFbqJZrFhI7JkHUtlSRk2kvnoWf4zCoDHETKPmnwXP29kZJQ62no28kspF72MvE/r5uY4MpLuYwTwyRdHAoSgU2EswbwgCtGjZhaQqjiNiumI6IINbanki3BXf7yKmnXa+5FrX5/XmlU8zqKcAKnUAUXLqEBt9CEFlB4gmd4hTc0QS/oHX0sRgso3zmGP0CfP8pakgk=</latexit>GL

1

2

3

4
1

2

3

4
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Fig. 3. With the same cost graph, three different sensing graphs result in three different learning graphs. Each node in each graph has a self-loop, which is
omitted in this figure.

Now, based on the cost graph GC and the sensing graph GS , we give the definition for the communication graph required
in distributed learning.

Definition 3: (Learning Graph) The learning-required communication graph GL = (V, EL) is a directed graph with the
edge set EL defined as

EL = {(k, i) ∈ V × V : k ∈ ∪j∈ViSN
j
C , i ∈ V}. (45)

The neighbor set for each agent i in graph GL is defined as N i
L = {k ∈ V : (k, i) ∈ EL}, where (k, i) ∈ EL implies that there

is an oriented link from k to i.
To better understand the three different graphs, we summarize their definitions in Fig. 2, and show three examples demon-

strating the relationships between GS , GC and GL in Fig. 3.
Remark 3: There are two points we would like to note for the learning graph. First, since we consider that all the agents

have self-loops, by Definition 3, each edge of graph GC must be an edge of GL. Second, when GS is strongly connected, GL
is a complete graph because in this case ViS = V for all i ∈ G. As a result, if we regard each node in a sensing graph in Fig.
3 as a strongly connected component, then the resulting learning graph GL still has the same structure as it is shown in Fig.
3, where each node denotes a fully connected component, and the edge from node a to another node b denotes edges from all
agents in component a to all agents in component b.

Remark 4: When the multi-agent system has coupled dynamics, there will be another graph GD = (V, ED) describing the
inter-agent coupling in dynamics. We assume that GD is known, which is reasonable in many model-free scenarios because
we only need to have the coupling relationship between different agents. In this scenario, to construct the learning graph, the
sensing graph used in defining (45) should be replaced by a new graph GSD = (V, ESD) with ESD = ED∪ES , where ES is the
edge set of the graph GS describing the desired structure of the distributed control gain. If ED ⊆ ES , then the learning graph
is the same for the multi-agent networks with coupled and decoupled dynamics. The learning graph describes the required
information flow between the agents. However, the learning process may be distributed by consensus-based estimation to avoid

12

having a dense communication graph. Another way to reduce communication is to redesign the local cost of each agent by
ignoring agents that are far away from it in GD. In [45], it has been shown that ignoring those agents beyond the κ-hop
neighborhood of each agent would lead to biases on the order of γκ+1 in convergence.

Let {Mi}Ni=1 be solutions to (43) for i = 1, ..., N . Also let Q̂i = Mi � Q̃ and R̂i =
∑
j∈N iL(e>j ⊗ Im)Rj(ej ⊗ Im). By

collecting the parts of the entire cost function involving agents in N i
L, we define the local cost Ji as

Ji(K) = E

[∞∑

t=0

γt(x>Q̂ix+ x>K>R̂iKx)

]

= E

[∞∑

t=0

γt(x>N iL
Q̄ixN iL + u>N iL

R̄iuN iL)

]
,

(46)

where Q̄i is the maximum nonzero principal submatrix of Mi � Q̃ and R̄i = diag{Rj}j∈N iL .
Remark 5: Each agent i computes its local cost Ji(xN iL , uN iL) based on xj and u>j Rjuj , j ∈ N i

L. In practical application,
agent i may compute a finite horizon cost value to approximate the infinite horizon cost. The state information xj is sensed
from its neighbors in the learning graph, and u>j Rjuj is obtained from its neighbors via communications. Note that uN iL may
involve state information of agents in V \N i

L. However, it is not necessary for agent i to have such state information. Instead,
it obtains u>j Rjuj by communicating with agent j ∈ N i

L \ {i}.
Next we verify the validity of Assumption 2. Let Hi(K,x(0)) =

∑∞
t=0 γ

tx>(t)(Q̂i + K>R̂K)x(t). The next proposition
shows that the local cost functions we constructed satisfy Assumption 2.

Proposition 1: The local cost Ji(K) constructed in (46) has the following properties.
(i). There exists a scalar clqr > 0 such that Hi(K,x(0)) ≤ clqrJi(K) for any K ∈ Ks and x(0) ∼ D.
(ii). ∇KiJi(K) = ∇KiJ(K) for any K ∈ Ks.

C. Distributed RL Algorithms for Multi-Agent LQR

Due to Proposition 1, we are able to apply Algorithms 2 to the distributed multi-agent LQR problem. Let Ki = vec(K̃i) ∈
Rqi , where K̃i is defined in (41), qi = mni = mn|N i

S |, i = 1, ..., N . From the degree sum formula, we know
N∑

i=1

qi = mn

N∑

i=1

|N i
S | = 2mn|ES | , q.

Define K = (K>1 , ...,K
>
N)> ∈ Rq . There must uniquely exist a control gain matrix K ∈ RmN×nN corresponding to K. Let

MK(·) : Rq → Kd be the mapping transforming K to a distributed stabilizing gain.
To apply Algorithm 2 to the multi-agent LQR problem, we need to implement Algorithm 1 based on the learning graph GL

to achieve a clustering {Vj , j = 1, ..., s}. Then the asynchronous RL algorithm for problem (37) is given in Algorithm 3. Note
that the algorithm requires a stabilizing distributed control gain as the initial policy. One way to achieve this is making each
agent learn a policy stabilizing itself, which has been studied in [46].

For the convenience of the readers to understand Algorithm 3, we present Table I to show the exact correspondence between
the stochastic optimization (SO) problem in Section III and the LQR problem in this section. In Table I, H(K,x(0)) =∑∞
t=0 γ

tx>(t)(Q+K>RK)x(t). From Table I and the distributed learning diagram in Fig. 1, we observe that the distributed
learning nature of Algorithm 3 is reflected by the learning graph GL. Specifically, each agent learns its policy based on its
own estimated cost value and information from its neighbors in graph GL.

TABLE I
THE CORRESPONDENCE BETWEEN THE SO PROBLEM AND THE LQR PROBLEM.

Problem Variables
SO x ξ h(x, ξ) f(x) T G

LQR K x(0) H(K,x(0)) J(K) TK GL

D. Convergence Analysis

In this subsection, we show the convergence result of Algorithm 3. Throughout this subsection, we adopt Ji(K) in (46) as the
local cost function for agent i. Let QKi = Q̂i+K>R̂iK, JTJi (K) = E[

∑TJ−1
t=0 x>(t)QKi x(t)], G = (G>1 , ...,G

>
N)>, Gi(k) =

qi
ri
Ji(k)Di(k), GTJ = ((GTJ

1)>, ..., (GTJ
N)>)>, where Gi and GTJ

i are the ideal and the actual estimates, respectively, of the
gradient of the local cost function for agent i.

The essential difference between Algorithm 2 and Algorithm 3 is that the computation of the cost function in an LQR
problem is inaccurate because (47) only provides a finite horizon cost, whereas the cost in (46) without expectation is with
infinite horizon. This means that we need to take into account the estimation error of each local cost.

13

Algorithm 3 Asynchronous Distributed Learning for Multi-Agent LQR
Input: Step-size η, smoothing radius ri and variable dimension qi, i = 1, ..., N , clusters Vj , j = 1, ..., s, iteration numbers TK and
TJ for controller variable and the cost, respectively, update sequence zk and extrapolation weight wk

i , k = 0, ..., TK − 1, K0 such that
MK(K0) ∈ Ks.
Output: K∗.

1. for k = 0, 1, ..., TK − 1 do
2. Sample x0 ∼ D. Set x(0) = x0.
3. for i ∈ V do
4. if i ∈ Vzk do (Simultaneous Implementation)
5. Agent i samples Di(k) ∈ Rqi randomly from Sqi−1, and computes K̂k

i = Kk
i + wk

i (Kk
i −K

kprev
i).

6. Agent i implements its controller

ui(t, k) = −vec−1(K̂k
i + riDi(k))xN i

S
(t),

while each agent j ∈ V \ Vzk implements uj(t, k) = −vec−1(Kk
j)xN j

S
(t)for t = 0, ..., TJ − 1, and observes

Hi,TJ (Ki,k, x(0)) =

TJ−1∑
t=0

γt
[
x>N i

L
(t)Q̄ixN i

L
(t) + u>N i

L
(t, k)R̄iuN i

L
(t, k)

]
. (47)

7. Agent i computes the estimated gradient:

GTJ
i (k) =

qi
ri
Hi,TJ (Ki,k, x(0))Di(k),

then updates its policy:
Kk+1

i = K̂k
i − ηGTJ

i (k). (48)

8. else
Kk+1

i = Kk
i . (49)

9. end
10. end
11. end
12. Set K∗ = Kk+1.

Let Hi(K,x(0)) =
∑∞
t=0 γ

t(x>N iL
Q̄ixN iL +u>N iL

R̄iuN iL), whose expectation is Ji(K) in (46). Then Hi corresponds to hi in
Algorithm 2. Therefore, the ideal and actual gradient estimates for agent i at step k are Gi(k) = qi

ri
Hi(K

i,k, x(0))Di(k), and
GTJ
i (k) = qi

ri
Hi,TJ (Ki,k, x(0))Di(k), respectively, where Ki,k =MK(Ki,k), Ki,k = (Kk>

1 , ..., (K̂k
i +riDi(k))>, ...,Kk>

N)>.
Note that for any K ∈ Rq , it holds that ‖K‖ = ‖MK(K)‖F .

We study the convergence by focusing on K ∈ Kα, where Kα is defined as

Kα = {K ∈ Kd : J(K) ≤ αJ(K0), Ji(K) ≤ αiJi(K0)} ⊆ Ks, (50)

where α, αi > 1, K0 ∈ Kd ∩Ks is the given initial stabilizing control gain. Then Kα is compact due to coerciveness of J(K)
(as shown in Lemma 4).

Due to the continuity of φK , λK , βK and ζK , and the compactness of Kα, we define the following parameters for K ∈ Kα:

φ0 = sup
K∈Kα

φK , λ0 = sup
K∈Kα

λK , ρ0 = inf
K∈Kα

{βK , ζK}, κ0 = sup
K∈Kα

‖√γ(A− BKi,k)‖, (51)

where κ0 ∈ (0, 1).
The following lemma evaluates the gradient estimation in the LQR problem.
Lemma 5: Given ε′ > 0 and Kk ∈ Kα, if ri ≤ ρ0

2 , wki ≤ ρ0

2‖Kk
i −K

kprev
i ‖F

and

TJ ≥ max
i∈V

1

2(1− κ0)
log

(
αiJi(K

0)λmax(x(0)x>(0))

λmin(Σx)ε′

)
, (52)

then
Hi(K

i,k, x(0))−Hi,TJ (Ki,k, x(0)) ≤ ε′, i ∈ V, (53)

‖E[GTJ
i (k)]−∇KiJ(Ki,k)‖ ≤ qiε

′

ri
+ φ0ri, (54)

‖GTJi (k)‖ ≤ qi
ri

[
clqr(αiJi(K

0) + λ0ρ0) + ε′
]
, (55)

where Ji,TJ is in (47).

14

Let J0(K0) = maxi∈V αiJi(K0). Based on Lemma 5 and Theorem 1, we have the following convergence result for
Algorithm 3.

Theorem 2: Under Assumption 4, given positive scalars ε, ν, γ, and α ≥ 2 + γ + 1
ν + νγ, K0 ∈ Ks ∩Kd. Let {Kk}TK−1

k=0

be the sequence of states obtained by implementing Algorithm 3 for k = 0, ..., TK − 1. Suppose that TJ satisfies (52) for each
k (TJ can be different for different steps), and

TK = d2ανJ(K0)

ηε
e, η ≤ min{ ρ0

2δ
√
N0

,
2αJ(K0)

γε
,

γε

2αN0(φ0δ2
2 + 4φ2

0 + φ0 + 4)
}, ε′ ≤ r−

4q+

√
γε

αN0
,

wki ≤
1

‖Kk
i −K

kprev
i ‖

min{η3/2,
ρ0

2
√
Ni
}, ri ≤ min{ρ0

2
,

1

4φ0

√
γε

αN0
}, i ∈ V,

(56)

where δ = q+
r−

[
clqr(αiJ0(K0) + λ0ρ0) + ε′

]
.

(i). The following holds with a probability at least 1− 1
α (2 + γ + 1

ν + νγ):

1

TK

TK−1∑

k=0

∑

i∈Vzk

‖∇KiJ(Kk)‖2 < ε. (57)

(ii). Under Assumption 3, suppose that there exists some ε̄ ∈ (0, ρ0] such that

wki ≤
ε̄

2(T0 − 1)Ni‖Kk
i −K

kprev
i ‖

, η ≤ ε̄

2δ(T0 − 1)N0
, (58)

for any step k ∈ {0, ..., TK − 1}, and conditions in (56) are satisfied, then the following holds with a probability at least
1− 1

α (2 + γ + 1
ν + νγ):

1

TK

TK−1∑

k=0

‖∇KJ(Kk)‖2 < ε̂. (59)

where ε̂ = 2T0(ε+ φ2
0ε̄

2).
From Theorem 2 (ii), the sample complexity for convergence of Algorithm 3 is TKTJ = O(q2

+N
2
0 log(q+/ε̂)/ε̂

3), which is
higher than that of Algorithm 2 because of the error on the local cost function evaluation in the LQR problem. The sample
complexity here has a lower order on convergence accuracy than that in [18]. Compared with [18], our algorithm has two
more advantages: (i) the sample complexity in [18] is affected by the convergence rate of the consensus algorithm, the number
of agents, and the dimension of the entire state variable, while the sample complexity of our algorithm depends on the local
optimization problem for each agent (the number of agents in one cluster and the dimension of the variable for one agent),
therefore rendering high scalability of our algorithm to large-scale networks; (ii) the algorithm in [18] requires each agent to
estimate the global cost during each iteration, while our algorithm is based on local cost evaluation, which benefits for variance
reduction and privacy preservation.

V. SIMULATION EXPERIMENTS

A. Optimal Tracking of Multi-Robot Formation

In this section, we apply Algorithm 3 to a multi-agent formation control problem. Consider a group of N = 10 robots
modeled by the following double integrator dynamics:

ri(t+ 1) = ri(t) + vi(t),

vi(t+ 1) = vi(t) + Ciui(t), i = 1, ..., 10,
(60)

where ri, vi, ui ∈ R2 are position, velocity, and control input of agent i, respectively, Ci ∈ R2×2 is a coupling matrix in the
dynamics of agent i. Let xi = (r>i , v

>
i)>, Ai = (I2 I2

02×2 I2
), Bi = (02×2, C

>
i)>, the dynamics (60) can be rewritten as

xi(t+ 1) = Aixi(t) +Biui(t). (61)

The control objective is to make the robots learn their own optimal controllers for the whole group to form a circular formation,
track a moving target, maintain the formation as close as possible to the circular formation during the tracking process, and
cost the minimum control energy. The target has the following dynamics:

r0(t+ 1) = r0(t) + v0, (62)

where the velocity v0 ∈ R2 is fixed. Let x0 = (r>0 , v
>
0)> be the state vector of the target, and di(t) = x0(t)+(cos θi, sin θi, 0, 0)>

with θi = 2πi
N be the desired time-varying state of robot i. Suppose that the initial state xi of each robot i is a random variable

15

1

2

3

41

2

3

4
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

23

4

5

6

7 8

9

10

1

23

4

5

6

7 8

9

10

1

23

4

5

6

7 8

9

10

<latexit sha1_base64="ytkj8gg5F4NstHNSzVQik9EMN38=">AAAB9HicbVBNTwIxFHyLX4hfqEcvjcSEE9klRj2SeNAjRkES2JBu6UJDt13bLgnZ8Du8eNAYr/4Yb/4bu7AHBSdpMpl5L286QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEEdoikkvVCbCmnAnaMsxw2okVxVHA6WMwvs78xwlVmknxYKYx9SM8FCxkBBsr+b0ImxHBPL2Z9e/75Ypbc+dAq8TLSQVyNPvlr95AkiSiwhCOte56bmz8FCvDCKezUi/RNMZkjIe0a6nAEdV+Og89Q2dWGaBQKvuEQXP190aKI62nUWAns5B62cvE/7xuYsIrP2UiTgwVZHEoTDgyEmUNoAFTlBg+tQQTxWxWREZYYWJsTyVbgrf85VXSrte8i1r97rzSqOZ1FOEETqEKHlxCA26hCS0g8ATP8ApvzsR5cd6dj8Vowcl3juEPnM8f1PaSEA==</latexit>GS

<latexit sha1_base64="QNM5eagTZ3Qv8E5YiH9b+7adjnw=">AAAB9HicbVBNTwIxFHzFL8Qv1KOXRmLCiewSox5JOOgREwET2JBu6UJDt7u2XRKy4Xd48aAxXv0x3vw3dmEPCk7SZDLzXt50/FhwbRznGxU2Nre2d4q7pb39g8Oj8vFJR0eJoqxNIxGpR59oJrhkbcONYI+xYiT0Bev6k2bmd6dMaR7JBzOLmReSkeQBp8RYyeuHxIwpEentfNAclCtOzVkArxM3JxXI0RqUv/rDiCYhk4YKonXPdWLjpUQZTgWbl/qJZjGhEzJiPUslCZn20kXoOb6wyhAHkbJPGrxQf2+kJNR6Fvp2MgupV71M/M/rJSa48VIu48QwSZeHgkRgE+GsATzkilEjZpYQqrjNiumYKEKN7alkS3BXv7xOOvWae1Wr319WGtW8jiKcwTlUwYVraMAdtKANFJ7gGV7hDU3RC3pHH8vRAsp3TuEP0OcPvLaSAA==</latexit>GC

<latexit sha1_base64="1Mlfir4sWJ6zBuYm0RdtNQBz8Dc=">AAAB9HicbVBNSwMxFHypX7V+VT16CRahp7JbRD0WPOjBQwVbC+1Ssmm2Dc1m1yRbKEt/hxcPinj1x3jz35ht96CtA4Fh5j3eZPxYcG0c5xsV1tY3NreK26Wd3b39g/LhUVtHiaKsRSMRqY5PNBNcspbhRrBOrBgJfcEe/fF15j9OmNI8kg9mGjMvJEPJA06JsZLXC4kZUSLSm1n/rl+uODVnDrxK3JxUIEezX/7qDSKahEwaKojWXdeJjZcSZTgVbFbqJZrFhI7JkHUtlSRk2kvnoWf4zCoDHETKPmnwXP29kZJQ62no28kspF72MvE/r5uY4MpLuYwTwyRdHAoSgU2EswbwgCtGjZhaQqjiNiumI6IINbanki3BXf7yKmnXa+5FrX5/XmlU8zqKcAKnUAUXLqEBt9CEFlB4gmd4hTc0QS/oHX0sRgso3zmGP0CfP8pakgk=</latexit>GL

 (a) (b) (c)

<latexit sha1_base64="ytkj8gg5F4NstHNSzVQik9EMN38=">AAAB9HicbVBNTwIxFHyLX4hfqEcvjcSEE9klRj2SeNAjRkES2JBu6UJDt13bLgnZ8Du8eNAYr/4Yb/4bu7AHBSdpMpl5L286QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEEdoikkvVCbCmnAnaMsxw2okVxVHA6WMwvs78xwlVmknxYKYx9SM8FCxkBBsr+b0ImxHBPL2Z9e/75Ypbc+dAq8TLSQVyNPvlr95AkiSiwhCOte56bmz8FCvDCKezUi/RNMZkjIe0a6nAEdV+Og89Q2dWGaBQKvuEQXP190aKI62nUWAns5B62cvE/7xuYsIrP2UiTgwVZHEoTDgyEmUNoAFTlBg+tQQTxWxWREZYYWJsTyVbgrf85VXSrte8i1r97rzSqOZ1FOEETqEKHlxCA26hCS0g8ATP8ApvzsR5cd6dj8Vowcl3juEPnM8f1PaSEA==</latexit>GS

<latexit sha1_base64="QNM5eagTZ3Qv8E5YiH9b+7adjnw=">AAAB9HicbVBNTwIxFHzFL8Qv1KOXRmLCiewSox5JOOgREwET2JBu6UJDt7u2XRKy4Xd48aAxXv0x3vw3dmEPCk7SZDLzXt50/FhwbRznGxU2Nre2d4q7pb39g8Oj8vFJR0eJoqxNIxGpR59oJrhkbcONYI+xYiT0Bev6k2bmd6dMaR7JBzOLmReSkeQBp8RYyeuHxIwpEentfNAclCtOzVkArxM3JxXI0RqUv/rDiCYhk4YKonXPdWLjpUQZTgWbl/qJZjGhEzJiPUslCZn20kXoOb6wyhAHkbJPGrxQf2+kJNR6Fvp2MgupV71M/M/rJSa48VIu48QwSZeHgkRgE+GsATzkilEjZpYQqrjNiumYKEKN7alkS3BXv7xOOvWae1Wr319WGtW8jiKcwTlUwYVraMAdtKANFJ7gGV7hDU3RC3pHH8vRAsp3TuEP0OcPvLaSAA==</latexit>GC

<latexit sha1_base64="1Mlfir4sWJ6zBuYm0RdtNQBz8Dc=">AAAB9HicbVBNSwMxFHypX7V+VT16CRahp7JbRD0WPOjBQwVbC+1Ssmm2Dc1m1yRbKEt/hxcPinj1x3jz35ht96CtA4Fh5j3eZPxYcG0c5xsV1tY3NreK26Wd3b39g/LhUVtHiaKsRSMRqY5PNBNcspbhRrBOrBgJfcEe/fF15j9OmNI8kg9mGjMvJEPJA06JsZLXC4kZUSLSm1n/rl+uODVnDrxK3JxUIEezX/7qDSKahEwaKojWXdeJjZcSZTgVbFbqJZrFhI7JkHUtlSRk2kvnoWf4zCoDHETKPmnwXP29kZJQ62no28kspF72MvE/r5uY4MpLuYwTwyRdHAoSgU2EswbwgCtGjZhaQqjiNiumI6IINbanki3BXf7yKmnXa+5FrX5/XmlU8zqKcAKnUAUXLqEBt9CEFlB4gmd4hTc0QS/oHX0sRgso3zmGP0CfP8pakgk=</latexit>GL

1

2

3

4
1

2

3

4
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Fig. 4. The sensing graph GS , cost graph GC and the resulting learning graph GL for the formation control problem.

with mean di, which implies that each agent is randomly perturbed from its desired state. Then the objective function to be
minimized can be written as

J = E(x(0)−d)∼D



∞∑

t=0


 ∑

(i,j)∈EC
‖xi(t)− xj(t)− (di − dj)‖2 +

∑

i∈Vr
‖xi − di‖2 +

N∑

i=1

‖ui(t)‖2



 , (63)

where Vr is the leader set consisting of robots that do not sense information from others but only chase for its target trajectory.
In the literature of formation control, usually the sensing graph via which each robot senses its neighbors’ state information
is required to have a spanning tree. Here we assume that the sensing graph has a spanning forest from the leader set VL.
Different from a pure formation control problem, the main goal of the LQR formulation is to optimize the transient relative
positions between different robots and minimize the required control effort of each agent. Fig. 4 shows the sensing graph, the
cost graph and the resulting learning graph for the formation control problem. The leader set is {1, 3, 5, 7, 9}.

Define the new state variable yi = xi − di for each robot i. Using the property Aidi(t) = di(t+ 1), we obtain dynamics of
yi as yi(t+ 1) = Aiyi(t) +Biui(t). The objective becomes

min
u
J = Ey(0)∼D

[∞∑

t=0

γt(y>(t)(L+ Λ)y(t) + u>(t)u(t))

]
, (64)

where y = (y>1 , ..., y
>
N)>, L is the Laplacian matrix corresponding to the cost graph, Λ is a diagonal matrix with Λii = 1 if

i ∈ Vr and Λii = 0 otherwise.
Let Ci = i

i+1I2, the initial stabilizing gain is given by K(0) = M−1
K (K0), where K0 = IN ⊗ K̃ and K̃ = (I2, 1.5I2),

which is stabilizing for each robot. By implementing Algorithm 1 based on the learning graph in Fig. 4 (c), the following
clustering is obtained :

V1 = {1, 4, 6, 8},V2 = {2, 5, 9},V3 = {3, 7, 10}, (65)

which means that there are three clusters update asynchronously, while agents in each cluster update their variable states via
independent local cost evaluations at one step. It will be shown that compared with the traditional BCD algorithm where only
one block coordinate is updated at one step, our algorithm is more efficient.

B. Simulation Results

We compare our algorithm with the centralized one-point ZOO algorithm in [5], where K is updated by taking an average
of multiple repeated global cost evaluations. Fig. 5 shows the simulation results, where the performance is evaluated with
given initial states of all the robots. When implementing the algorithms, each component of the initial states are randomly
generated from a truncated normal distribution N (0, 1). Moreover, we set η = 10−6, r = 1, TK = 1000, TJ = 50 for
both Algorithm 3 and the centralized algorithm. In Fig. 5, we show the performance trajectory of the controller generated
by different algorithms. When s = 10, Algorithm 3 is a BCD algorithm without clustering, i.e., each cluster only contains
one robot, while s = 3 corresponds to the clustering strategy in (65). The extrapolation weight wki for each agent i at each
step k is uniformly set. So wki = 0 implies that Algorithm 3 is not accelerated. To compare the variance of the controller
performance for different algorithms, we conduct gradient estimation for 50 times in each iteration, and plot the range of
performance induced by all the estimated gradients, as shown in the shaded areas of Fig. 5 (a). Each solid trajectory in Fig.
5 corresponds to a controller updated by using an average of the estimated gradients for the algorithm. Fig. 5 (b) shows the
trajectories of agents by implementing the convergent controller generated by Algorithm 3 with s = 3, and wki = 0.5, i ∈ V ,
k = 0, ..., TK − 1. From the simulation results, we have the following observations:
• Algorithm 3 always converges faster and has a lower performance variance than the centralized zeroth-order algorithm.
• Algorithm 3 with the cluster-wise update scheme converges faster than it with the agent-wise update scheme. This is

because the number of clusters dominates the sample complexity, as we analyzed below Theorem 2.

16

0 200 400 600 800 1000
Iteration Step

350

400

450

500

Pe
rfo

rm
an

ce
 E

vo
lu

tio
n

Centralized
s=10, wi

k=0

s=10, wi
k=0.5

s=3, wi
k=0

s=3, wi
k=0.5

0 5 10 15
X-axis

0

5

10

Y-
ax

is

Final Positions
Initial Positions

(a) (b) (c)

0 200 400 600 800 1000
Iteration Step

4500

5000

5500

6000

Pe
rfo

rm
an

ce
 E

vo
lu

tio
n

s=100, wi
k=0

s=100, wi
k=0.5

s=3, wi
k=0

s=3, wi
k=0.5

Fig. 5. (a) The group performance evolution of a 10-agent formation under the centralized ZOO algorithm, Algorithm 3 without clustering and acceleration,
without clustering but with acceleration, with clustering but without acceleration, and with both clustering and acceleration. The shaded areas denote the
performance corresponding to the controllers obtained by perturbing the current control gain with 50 random samplings. (b) The trajectories of robots under
the controller learned by Algorithm 3 with s = 3, wk

i = 0.5. (c) The performance evolution of a 100-agent formation under Algorithm 3 with different
parameters.

• Appropriate extrapolation weights not only accelerate Algorithm 3, but also decrease the performance variance.
Note that the performance of the optimal centralized controller is 345.271. The reason why Algorithm 3 converges to a

controller with a cost value larger than the optimal one in Fig. 5 (a) is that the distributed LQR problem has a structure
constraint for the control gain, which results in a feasible set Ks∩Kd, whereas the feasible set of the centralized LQR problem
is Ks.

Scalability to Large-Scale Networks. Even if we further increase the number of robots, the local cost of each robot always
involves only 5 robots as long as the structures of the sensing and cost graphs are maintained. That is, the magnitude of each
local cost does not change as the network scale grows. On the contrary, for global cost evaluation, the problem size severely
influences the estimation variance. The difference of variances between these two methods has been analyzed in Subsection
III-E. To show the advantage of our algorithm, we further deal with a case with 100 robots, where the cost, sensing and learning
graphs have the same structure as the 10-robot case, and implementing Algorithm 1 still results in 3 clusters. Simulation results
show that the centralized algorithm failed to solve the problem. The performance trajectories of Algorithm 3 with different
settings are shown in Fig. 5 (c), from which we observe that Algorithm 3 has an excellent performance, and both clustering
and extrapolation are efficient in improving the convergence rate. Note that the performance of the centralized optimal control
gain for the 100-agent case is 4119.87.

VI. CONCLUSION

We have proposed a novel distributed RL (zeroth-order accelerated BCD) algorithm with asynchronous sample and update
schemes. The algorithm was applied to distributed learning of the model-free distributed LQR by designing the specific local
cost functions and the interaction graph required by learning. A simulation example of formation control has shown that our
algorithm has significantly lower variance and faster convergence rate compared with the centralized ZOO algorithm. In the
future, we will look into how to reduce the sample complexity of the proposed distributed ZOO algorithm.

VII. APPENDIX

A. Analysis for the Asynchronous RL Algorithm
Proof of Lemma 1: It suffices to show that

Euli∈Sn−1
[fi(xi + riu

l
i, x−i)u

l
i] =

ri
qi
∇xi f̂i(x), (66)

for i = 1, ..., N . This has been proved in [3, Lemma 1]. �
Proof of Lemma 2: Denote vi = (0, ..., 0, v>i , 0, ..., 0)> ∈ Rq with vi ∈ Rqi . The following holds:

‖∇xi f̂i(x)−∇xif(x)‖
= ‖∇xiEvi∈Bqi [fi(xi + rivi, x−i)]−∇xif(x)‖
= ‖Evi∈Bqi [∇xifi(xi + rivi, x−i)−∇xif(x)] ‖
≤ Evi∈Bqi‖∇xifi(xi + rivi, x−i)−∇xif(x)‖
= Evi∈Bq‖∇xif(x+ riv

i)−∇xif(x)‖
≤ Evi∈Bq‖∇xf(x+ riv

i)−∇xf(x)‖
≤ φxri,

(67)

17

where the second equality follows from the smoothness of fi(x), and the first inequality used Jensen’s inequality. �
Before proving Theorem 1, we show that once xk is restricted in X, we are able to give a uniform bound on the estimated

gradient gi(x̂i, xk−i, u, ξ) at each step, see the following lemma.
Lemma 6: If ri ≤ ρ0/2 and wki ≤ ρ0

2‖xki−x
prev
i ‖ , then for any xk ∈ X, the estimated gradient satisfies

‖gi(x̂ki , xk−i, ui, ξ)‖ ≤
qi
ri
c
[
αifi(x

0) + λ0ρ0

]
. (68)

Proof: Using the definition of gi(x, ui, ξ) in (16), we have

‖gi(x̂ki , xk−i, ui, ξ)‖ =
qi
ri
hi(x̂

k
i + riui, x

k
−i, ξ)

≤ qi
ri
cfi(x̂

k
i + riui, x

k
−i)

≤ qi
ri
c
[
fi(x

k) + λ0ρ0

]

≤ qi
ri
c
[
αifi(x

0) + λ0ρ0

]
,

(69)

where the first inequality used Assumption 2, the second inequality used the local Lipschitz continuity of f(x) over X because

‖x̂ki + riui − xki ‖ ≤ ‖x̂ki − xki ‖+ ri = wki ‖xki − x
kprev
i ‖+ ri ≤ ρ0, (70)

and the last inequality holds because xk ∈ X. �
Proof of Theorem 1: To facilitate the proof, we give some notations first. Let Kki = {j : i ∈ Vzj , j ≤ k} be the set of

iterations that xi is updated before step k, dki = |Kki | be the number of times that xi has been updated until step k. Let x̃ji be
the value of xi after it is updated j times, then xki = x̃

dki
i . We use gi(x̂ki , x

k
−i) as the shorthand of gi(x̂ki , x

k
−i, u, ξ). Let Fk

denote the σ-field containing all the randomness in the first k iterations. Moreover, we use the shorthand Ek[·] = E[·|Fk].
(i). Suppose xk ∈ X. Since f(x) has a (φ0, ρ0) Lipschitz continuous gradient at xk, and

‖xk+1 − xk‖2 =
∑

i∈Vzk

‖xk+1
i − xki ‖2

≤
∑

i∈Vzk

[
wki (xki − x

kprev
i) + η‖gi(x̂ki , xk−i)‖

]2

≤ Ni(
ρ0

2
√
Ni

+
ρ0

2
√
N0

)2 ≤ ρ2
0,

(71)

it holds that

f(xk+1)− f(xk) ≤
∑

i∈Vzk

[
〈∇xif(xk), xk+1

i − xki 〉+
φ0

2
‖xk+1

i − xki ‖2
]

≤
∑

i∈Vzk

[
〈∇xifi(xk), wki (xki − x

kprev
i)− ηgi(x̂ki)〉+

φ0

2
η2‖gi(x̂ki , xk−i)‖2 +

φ0

2
(wki)2‖xki − x

kprev
i ‖2

]

=
∑

i∈Vzk

[
−η‖∇xifi(xk)‖2 +

φ0

2
η2‖gi(x̂ki , xk−i)‖2 + η∆k

i + Θk
i

]
,

(72)

where ∆k
i = ‖∇xifi(xk)‖2 − 〈∇xifi(xk), gi(x̂

k
i , x

k
−i)〉, Θk

i = 〈∇xif(xk), wki (xki − x
kprev
i)〉+ φ0

2 (wki)2‖xki − x
kprev
i ‖2.

Define the first iteration step at which x escapes from X below:

τ = min{k : x(k) /∈ X}. (73)

Next we analyze Ek
[
(f(xk)− f(xk+1))1τ>k

]
. Under the condition τ > k, both ‖∇xifi(x̂ki , xk−i) − Ek[gi(x̂

k
i , x

k
−i)]‖ and

‖gi(x̂ki , xk−i)‖ are uniformly bounded. For notation simplicity in the rest of the proof, according to Lemma 2 and Lemma 6, we
adopt θ = φ0 maxi∈V ri as the uniform upper bound of ‖∇xifi(x̂ki , xk−i)− Ek[gi(x̂

k
i , x

k
−i)]‖, and δ = q+

r−
c
[
αf0(x0) + λ0ρ0

]

as the uniform upper bound of ‖gi(x̂ki , xk−i)‖.

18

According to Assumption 2, ∇xifi(x) is (φ0, ρ0) locally Lipschitz continuous. Then we are able to bound Ek[∆k
i] if τ > k:

Ek[∆k
i] = 〈∇xifi(xk),∇xifi(xk)−∇xifi(x̂ki , xk−i)〉+ 〈∇xifi(xk),∇xifi(x̂ki , xk−i)− Ek[gi(x̂

k
i , x

k
−i)]〉

≤ ‖∇xifi(xk)‖φ0‖xki − x̂ki ‖+ θ‖∇xifi(xk)‖
= wki φ0‖∇xifi(xk)‖‖x̃d

k
i
i − x̃

dki−1
i ‖+ θ‖∇xifi(xk)‖

≤ 1

8
‖∇xifi(xk)‖2 + 2(wki)2φ2

0‖x̃
dki
i − x̃

dki−1
i ‖2 + θ‖∇xifi(xk)‖

≤ 3

8
‖∇xifi(xk)‖2 + 2φ2

0η
3 + θ2,

(74)

where the first inequality used ‖xki − x̂ki ‖ = ‖wki (xki − x
kprev
i)‖ ≤ ρ0, and the Lipschitz continuity of ∇xif(xki , x

k
−i), the

second equality used (13), the second and the last inequalities used Young’s inequality, and wki ≤ η3/2/‖xki − x
kprev
i ‖.

Similarly, we bound Ek[Θk
i] for τ > k as follows.

Ek[Θk
i] ≤ 1

8
η‖∇xifi(xk)‖2 + 2η2 +

φ0

2
η3, (75)

where we used wki ≤ η3/2

‖xki−x
kprev
i ‖

.
Combining the inequalities (72), (74) and (75), we have

Ek[(f(xk+1)− f(xk))1τ>k] ≤ −1

2

∑

i∈Vzk

ηEk
[
‖∇xif(xk)‖21τ>k

]
+
ηZ

2
, (76)

where Z = N0(φ0δ
2η + 4φ2

0η
3 + 2θ2 + 4η + φ0η

2).
Note that

Ek
[
f(xk+1)1τ>k+1

]
≤ Ek

[
f(xk+1)1τ>k

]
= Ek

[
f(xk+1)

]
1τ>k, (77)

where the equality holds because all the randomness before the (k + 1)th iteration has been considered in Ek[·]. Then 1τ>k
is determined. It follows that

Ek
[
(f(xk)− f(xk+1))1τ>k

]
≤ Ek

[
f(xk)1τ>k − f(xk+1)1τ>k+1

]
. (78)

Summing (76) over k from 0 to T − 1 and utilizing (78) yields

Ek[f(x>)1τ>T]− f(x0) ≤ −1

2

T−1∑

k=0

∑

i∈Vzk

ηEk
[
‖∇xif(xk)‖2

]
+ TηZ/2. (79)

It follows that
1

T

T−1∑

k=0

∑

i∈Vzk

Ek[‖∇xif(xk)‖2] ≤ 2

ηT
f(x0) + Z. (80)

Now we analyze the probability P(τ < T). Define the process

Y (k) = f(xmin{k,τ}) +
η

2
(T − k)Z, k = 0, ..., T − 1, (81)

which is non-negative and almost surely bounded under the given conditions. Next we show Y (k) is a supermartingale by
discussing the following two cases:

Case 1, τ > k.

Ek[Y (k + 1)] = Ek[f(xk+1)] +
η

2
(T − k − 1)Z

= f(xk)+Ek[f(xk+1)− f(xk)] +
η

2
(T − k − 1)Z

≤ f(xk)+
η

2
(T − k)Z = Y (k),

(82)

where the inequality used (76).
Case 2, τ ≤ k.

Ek[Y (k + 1)] = f(xτ) +
η

2
(T − k − 1)Z ≤ f(xτ) +

η

2
(T − k)Z = Y (k). (83)

19

Therefore, Y (k) is a super-martingale. Invoking Doob’s maximal inequality for super-martingales yields

P(τ < T) ≤ P(max
k=0,...,T−1

f(xk) > αf(x0))

≤ P(max
k=0,...,T−1

Y (k) > αf(x0))

≤ Ek[Y (0)]

αf(x0)
=
f(x0) + ηTZ/2

αf(x0)
=

2 + νγ

α
.

(84)

where the last equality used η ≤ 2αf(x0)
γε , T ≤ 2αf(x0)

εη ν + 1, and Z ≤ γε/α. The upper bound for Z is obtained by noting
that our conditions on ri and η cause that 2θ2 ≤ γε

2αN0
and φ0δ

2η + 4φ2
0η

3 + 4η + φ0η
2 ≤ (φ0δ

2
2 + 4φ2

0 + 4 + φ0)η ≤ γε
2αN0

(we consider η ≤ 1 by default).
It follows that

P(
1

T

T−1∑

k=0

∑

i∈Vzk

‖∇xif(xk)‖2 ≥ ε) ≤ P(
1

T

T−1∑

k=0

∑

i∈Vzk

‖∇xif(xk)‖21τ≥T ≥ ε) + P(τ < T)

≤ 1

ε
Ek

 1

T

T−1∑

k=0

∑

i∈Vzk

‖∇xif(xk)‖21τ≥T


+ P(τ < T)

≤ 1

α
(γ +

1

ν
) +

2 + νγ

α
=

1

α
(2 + γ +

1

ν
+ νγ),

(85)

where the last inequality used (80), T ≥ 2ανf(x0)
ηε and Z ≤ γε/α.

(ii). Without loss of generality, suppose that T is divisible by T0 (if not, the convergence accuracy ε can be re-selected from
its small neighborhood such that T = d 2ανf(x0)

ηε e is divisible by T0.). Let M = T
T0

. For any K ∈ {0, ...,M − 1}, distinct steps
k, k′ ∈ [KT0,KT0 + T0 − 1] and xk, xk

′ ∈ X, we have

‖xk − xk′‖ ≤
KT0+T0−2∑

l=KT0

‖xl − xl+1‖

≤
KT0+T0−2∑

l=KT0

∑

i∈Vzl

(
wli‖xli − x

lprev
i ‖+ η‖gi(x̂li, xl−i)‖

)

≤
KT0+T0−2∑

l=KT0

∑

i∈Vzl

(
ε̄

2(T0 − 1)Ni
+

ε̄

2(T0 − 1)N0

)
≤ ε̄ ≤ ρ0,

(86)

where the third inequality utilized (28), and |Vzl | = Ni ≤ N0. Then the smoothness of f(x) at xk implies that

‖∇xf(xk)−∇xf(xk
′
)‖ ≤ φ0ε̄. (87)

It follows that

1

T0
‖∇xf(xk

′
)‖2 =

1

T0

s∑

j=1

∑

i∈Vj
‖∇xif(xk

′
)‖2

≤ 1

T0

(K+1)T0−1∑

k=KT0

∑

i∈Vzk

‖∇xif(xk
′
)‖2

≤ 1

T0

(K+1)T0−1∑

k=KT0

∑

i∈Vzk

(
2‖∇xif(xk)‖2 + 2‖∇xif(xk)−∇xif(xk

′
)‖2
)

≤ 1

T0

(K+1)T0−1∑

k=KT0

∑

i∈Vzk

2‖∇xif(xk)‖2 + 2φ2
0ε̄

2.

(88)

20

Then we have

1

T

T−1∑

k=0

‖∇xf(xk)‖2 =
T0

T

M−1∑

K=0

(K+1)T0−1∑

k′=KT0

1

T0
‖∇xf(xk

′
)‖2

≤ T0

T

M−1∑

K=0




(K+1)T0−1∑

k=KT0

∑

i∈Vzk

2‖∇xif(xk)‖2 + 2T0φ
2
0ε̄

2




=
T0

T



MT0−1∑

k=0

∑

i∈Vzk

2‖∇xif(xk)‖2 + 2MT0φ
2
0ε̄

2


 ,

(89)

where the second inequality used (88).
Reusing (85), the following holds with probability 1− 1

α (2 + γ + 1
ν + νγ):

1

T

T−1∑

k=0

‖∇xf(xk)‖2 < 2T0(ε+ φ2
0ε̄

2). (90)

This completes the proof. �
Proof of Lemma 3: For notation simplicity, when the expectation is taken over all the random variables in a formula, we

use E as the shorthand. Moreover, we use ∇i to represent ∇xi .
During the derivation, we will use the first-order approximation (assuming a sufficiently small r), i.e.,

hi(xi + rui, x−i, ξ) = hi(xi, x−i, ξ) +∇ihi(xi, x−i, ξ)rui +O(r2). (91)

For gl, it holds that

E[glg
>
l] = E[

qi
r
hi(xi + rui, x−i, ξ)uiu

>
i

qi
r
hi(xi + rui, x−i, ξ)]

=
q2
i

r2
E[h2

i (xi + rui, x−i, ξ)uiu
>
i]

=
q2
i

r2
E
[
(hi(x, ξ) + ru>i ∇ihi(x, ξ) +O(r2))2uiu

>
i

]

=
q2
i

r2
Eξ[h2

i (x, ξ) +O(r2)]Eui [uiu>i]

=
qi
r2

E[h2
i (x, ξ) +O(r2)]Iqi ,

(92)

where the fourth inequality is obtained by E(uiu
>
i ui) = 0, and the last equality used E[uiu

>
i] = 1

qi
Iqi since ui ∼ Uni(Sqi−1).

On the other hand,

E[
qi
r
hi(xi + rui, x−i, ξ)ui] =

qi
r
E
[
(hi(x, ξ)ui + ru>∇xihi(x, ξ))ui +O(r2)

]
= E[∇xihi(x, ξ)] +O(r). (93)

As a result, Cov(gl) is in (32).
Similarly,

E[gg] = E[
q

r
h(x+ rz, ξ)zi]

=
q

r
E[h(x, ξ)zi + rz>∇xih(x, ξ)zi +O(r2)]

= qE[ziz
>]E[∇xh(x, ξ)] +O(r) (94)

= [0qi×q1 , · · · , Iqi , · · · ,0qi×qN]E[∇xh(x, ξ)] +O(r)

= E[∇xih(x, ξ)] +O(r),

where the last equality used E[zz>] = 1
q Iq . Also

E[ggg
>
g] =

q2

r2
E
[
h(x+ rz, ξ)ziz

>
i h(x+ rz, ξ)

]

=
q2

r2
E
[
(h(x, ξ) + rz>∇xh(x, ξ) +O(r2))2ziz

>
i

]
(95)

=
q

r2
E[h2(x, ξ) +O(r2)]Iqi .

Thus, Cov(gg) is in (33). �

21

B. Analysis for Application to Multi-Agent LQR

Proof of Proposition 1: (i). Due to the boundedness of x(0), there must exist clqr > 0 such that for any x(0) ∼ D, it holds
that x(0)x>(0) � clqrE[x(0)x>(0)] = clqrΣx. Let Q∞i,K =

∑∞
t=0 γ

t(A− BK)t>(Q̂i +K>R̂iK)(A− BK)t. It follows that

Hi(K,x(0)) = 〈Q∞i,K , x(0)x>(0)〉 ≤ clqr〈Q∞i,K ,Σx〉 = clqrEx(0)∼D[Hi(K,x(0))] = clqrJi(K). (96)

(ii). Given two control gains
K = (K>1 , ...,K

>
i , ...,K

>
N)>,

K ′ = (K>1 , ...,K
′
i
>
, ...,K>N)>.

Given the initial state x(0), let x(t) and x′(t) be the resulting entire system state trajectories by implementing controllers
u = −Kx and u = −K ′x, respectively. It holds for any j ∈ V that

xj(t+ 1) = Ajxj(t) +BjKjx(t) = Ajxj(t) +BjK̃jxN jS
(t). (97)

Note that for all j ∈ V \ N i
L, it must hold that N j

C ∩ ViS = ∅. From the definition of ViS , we have xj(t) = x′j(t) and
xN jS

(t) = x′N jS
(t) for all j ∈ V \ N i

L. It follows that x>(Q− Q̂i)x = x′>(Q− Q̂i)x′, and for any j ∈ V \ N i
L, we have

x>K>j RjKjx = x>N jS
K̃>j RjK̃jxN jS

= x
′>
N jS
K̃>j RjK̃jx

′
N jS
.

Therefore,

J(K)− J(K ′)

= E

[∞∑

t=0

x>(Q+K>RK)x

]
− E

[∞∑

t=0

x′
>

(Q+K>RK)x′
]

= E



∞∑

t=0

x>(Q̂i +
∑

j∈N iL

K>j RjKj)x


− E



∞∑

t=0

x′
T

(Q̂i +
∑

j∈N iL

K ′
>
j RjK

′
j)x
′




= Ji(K)− Ji(K ′).

(98)

This means that any perturbation on Ki results in the same difference on J(K) and Ji(K). The proof is completed. �
Proof of Lemma 5: Note that

Hi(K
i,k, x(0))−Hi,TJ (Ki,k, x(0)) =

∞∑

t=TJ

γtx>(t)(Q̂i +Ki,k>R̂iK
i,k)x(t)

=

∞∑

t=TJ

y>(t)(Q̂i +Ki,k>R̂iK
i,k)y(t)

= x>(0)
(
(
√
γ(A− BKi,k))TJ

)>
Pi
(√
γ(A− BKi,k)

)TJ
x(0)

≤ λmax(x(0)x>(0))trace(Pi)‖
√
γ(A− BKi,k)‖2TJ

(99)

where y(t) = γt/2x(t), the third equality comes from the fact y(t+ 1) =
√
γ(A− BK)y(t), and Pi is the solution to

Pi = Q̂i +Ki,k>R̂iK
i,k + γ(A− BKi,k)>Pi(A− BKi,k). (100)

Since E[x>(0)Pix(0)] = Ji(K
i,k), we have trace(Pi) ≤ Ji(K

i,k)
λmin(Σx) ≤

αiJi(K
0)

λmin(Σx) . Recalling that ‖√γ(A− BKi,k)‖ ≤ κ0, we
have

Hi(K
i,k, x(0))−Hi,TJ (Ki,k, x(0)) ≤ $αiJi(K0)κ2TJ

0 , (101)

where $ = λmax(x(0)x>(0))
λmin(Σx) .

It follows from (52) that

2TJ ≥
log
(
$αiJi(K

0)/ε′
)

log(1/κ0)
= logκ0

(ε′/($αiJi(K
0))), (102)

where the inequality used the fact 1−κ0 ≤ log(1/κ0). Substituting (102) into (101) yields Hi(K
i,k, x(0))−Hi,TJ (Ki,k, x(0)) ≤

ε′.
Next we prove (54). For any i ∈ V , we have

‖E[Gi(k)−GTJ
i (k)]‖ ≤ |qi

ri
(Hi(K

i,k, x(0))−Hi,TJ (Ki,k, x(0)))| · max
Di∈Sqi−1

‖Di‖

≤ qi
ri
ε′.

(103)

22

According to Lemma 2, when ri ≤ ρ0 ≤ βK , we have

‖E[Gi(k)]−∇Ki
J(Ki,k)‖ ≤ φ0ri. (104)

Using the triangular inequality yields (54).
Next we bound ‖GTJ

i (k)‖:

‖GTJ
i (k)‖ ≤ qi

ri
(Hi(K

i,k, x(0)) + ε′)

≤ qi
ri

(clqrJi(K
i,k) + ε′)

≤ qi
ri

[
clqr(Ji(K

k) + λ0ρ0) + ε′
]

≤ qi
ri

[
clqr(αiJi(K

0) + λ0ρ0) + ε′
]
,

(105)

where the first inequality used the first statement in Proposition 1, the second inequality used

‖Ki,k −Kk‖ ≤ ‖K̂k
i −Kk

i ‖+ ri = wi‖Kk
i −K

kprev
i ‖+ ri ≤ ρ0,

the third inequality used Ji(Kk) ≤ αiJi(K0). �

REFERENCES

[1] J. C. Spall, Introduction to stochastic search and optimization: estimation, simulation, and control. John Wiley & Sons, 2005, vol. 65.
[2] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of convex functions,” Foundations of Computational Mathematics, vol. 17, no. 2, pp.

527–566, 2017.
[3] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex optimization in the bandit setting: gradient descent without a gradient,” arXiv preprint

cs/0408007, 2004.
[4] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order optimization based black-box attacks to deep neural networks without

training substitute models,” in Proceedings of the 10th ACM workshop on artificial intelligence and security, 2017, pp. 15–26.
[5] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence of policy gradient methods for the linear quadratic regulator,” in International

Conference on Machine Learning. PMLR, 2018, pp. 1467–1476.
[6] D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. L. Bartlett, and M. J. Wainwright, “Derivative-free methods for policy optimization: Guarantees for

linear quadratic systems,” Journal of Machine Learning Research, vol. 21, no. 21, pp. 1–51, 2020.
[7] L. Furieri, Y. Zheng, and M. Kamgarpour, “Learning the globally optimal distributed lq regulator,” in Learning for Dynamics and Control. PMLR,

2020, pp. 287–297.
[8] H. Mohammadi, M. Soltanolkotabi, and M. R. Jovanović, “On the linear convergence of random search for discrete-time lqr,” IEEE Control Systems

Letters, vol. 5, no. 3, pp. 989–994, 2020.
[9] A. Agarwal, O. Dekel, and L. Xiao, “Optimal algorithms for online convex optimization with multi-point bandit feedback.” in COLT. Citeseer, 2010,

pp. 28–40.
[10] O. Shamir, “An optimal algorithm for bandit and zero-order convex optimization with two-point feedback,” The Journal of Machine Learning Research,

vol. 18, no. 1, pp. 1703–1713, 2017.
[11] Y. Zhang, Y. Zhou, K. Ji, and M. M. Zavlanos, “A new one-point residual-feedback oracle for black-box learning and control,” Automatica, vol. 136, p.

110006, 2022.
[12] P. K. Sharma, E. Zaroukian, R. Fernandez, A. Basak, and D. E. Asher, “Survey of recent multi-agent reinforcement learning algorithms utilizing

centralized training,” in Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III, vol. 11746. International Society
for Optics and Photonics, 2021, p. 117462K.

[13] H. Sun and M. Hong, “Distributed non-convex first-order optimization and information processing: Lower complexity bounds and rate optimal algorithms,”
IEEE Transactions on Signal processing, vol. 67, no. 22, pp. 5912–5928, 2019.

[14] D. Hajinezhad, M. Hong, and A. Garcia, “Zone: Zeroth-order nonconvex multiagent optimization over networks,” IEEE Transactions on Automatic
Control, vol. 64, no. 10, pp. 3995–4010, 2019.

[15] C. Gratton, N. K. Venkategowda, R. Arablouei, and S. Werner, “Privacy-preserving distributed zeroth-order optimization,” arXiv preprint
arXiv:2008.13468, 2020.

[16] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms for nonconvex multi-agent optimization,” IEEE Transactions on Control of Network
Systems, 2020.

[17] A. Akhavan, M. Pontil, and A. B. Tsybakov, “Distributed zero-order optimization under adversarial noise,” arXiv preprint arXiv:2102.01121, 2021.
[18] Y. Li, Y. Tang, R. Zhang, and N. Li, “Distributed reinforcement learning for decentralized linear quadratic control: A derivative-free policy optimization

approach,” arXiv preprint arXiv:1912.09135, 2019.
[19] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2, pp. 341–362,

2012.
[20] Z. Peng, T. Wu, Y. Xu, M. Yan, and W. Yin, “Coordinate-friendly structures, algorithms and applications,” Annals of Mathematical Sciences and

Applications, vol. 1, no. 1, pp. 57–119, 2016.
[21] A. A. Canutescu and R. L. Dunbrack Jr, “Cyclic coordinate descent: A robotics algorithm for protein loop closure,” Protein science, vol. 12, no. 5, pp.

963–972, 2003.
[22] P. Richtárik and M. Takáč, “Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function,” Mathematical

Programming, vol. 144, no. 1, pp. 1–38, 2014.
[23] S. J. Wright, “Coordinate descent algorithms,” Mathematical Programming, vol. 151, no. 1, pp. 3–34, 2015.
[24] Y. Xu and W. Yin, “A globally convergent algorithm for nonconvex optimization based on block coordinate update,” Journal of Scientific Computing,

vol. 72, no. 2, pp. 700–734, 2017.
[25] H. Cai, Y. Lou, D. McKenzie, and W. Yin, “A zeroth-order block coordinate descent algorithm for huge-scale black-box optimization,” arXiv preprint

arXiv:2102.10707, 2021.
[26] Z. Yu and D. W. Ho, “Zeroth-order stochastic block coordinate type methods for nonconvex optimization,” arXiv preprint arXiv:1906.05527, 2019.
[27] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,” Automatica, vol. 53, pp. 424–440, 2015.

23

[28] X. Fang, X. Li, and L. Xie, “Angle-displacement rigidity theory with application to distributed network localization,” IEEE Transactions on Automatic
Control, 2020.

[29] H. Ebel and P. Eberhard, “Distributed decision making and control for cooperative transportation using mobile robots,” in International Conference on
Swarm Intelligence. Springer, 2018, pp. 89–101.

[30] H. Feng and J. Lavaei, “On the exponential number of connected components for the feasible set of optimal decentralized control problems,” in 2019
American Control Conference (ACC). IEEE, 2019, pp. 1430–1437.

[31] J. Bu, A. Mesbahi, and M. Mesbahi, “On topological and metrical properties of stabilizing feedback gains: the mimo case,” arXiv preprint
arXiv:1904.02737, 2019.

[32] F. Borrelli and T. Keviczky, “Distributed lqr design for identical dynamically decoupled systems,” IEEE Transactions on Automatic Control, vol. 53,
no. 8, pp. 1901–1912, 2008.

[33] J. Bu, A. Mesbahi, M. Fazel, and M. Mesbahi, “Lqr through the lens of first order methods: Discrete-time case,” arXiv preprint arXiv:1907.08921, 2019.
[34] G. Jing, H. Bai, J. George, A. Chakrabortty, and P. K. Sharma, “Learning distributed stabilizing controllers for multi-agent systems,” IEEE Control

Systems Letters, 2021.
[35] G. Jing, H. Bai, J. George, and A. Chakrabortty, “Model-free optimal control of linear multi-agent systems via decomposition and hierarchical

approximation,” IEEE Transactions on Control of Network Systems, 2021.
[36] S. Kar, J. M. Moura, and H. V. Poor, “QD-learning: A collaborative distributed strategy for multi-agent reinforcement learning through consensus +

innovations,” IEEE Transactions on Signal Processing, vol. 61, no. 7, pp. 1848–1862, 2013.
[37] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep decentralized multi-task multi-agent reinforcement learning under partial observability,”

in International Conference on Machine Learning. PMLR, 2017, pp. 2681–2690.
[38] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive environments,” arXiv preprint

arXiv:1706.02275, 2017.
[39] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized multi-agent reinforcement learning with networked agents,” in International

Conference on Machine Learning. PMLR, 2018, pp. 5872–5881.
[40] T. Chen, K. Zhang, G. B. Giannakis, and T. Basar, “Communication-efficient policy gradient methods for distributed reinforcement learning,” IEEE

Transactions on Control of Network Systems, 2021.
[41] M. Rudelson, R. Vershynin et al., “Hanson-wright inequality and sub-gaussian concentration,” Electronic Communications in Probability, vol. 18, 2013.
[42] A. G. Chkhartishvili, D. A. Gubanov, and D. A. Novikov, Social Networks: Models of information influence, control and confrontation. Springer, 2018,

vol. 189.
[43] X. Chen, “Multi-agent systems with reciprocal interaction laws,” Ph.D. dissertation, Harvard University, 2014.
[44] J. Qin, Q. Ma, Y. Shi, and L. Wang, “Recent advances in consensus of multi-agent systems: A brief survey,” IEEE Transactions on Industrial Electronics,

vol. 64, no. 6, pp. 4972–4983, 2016.
[45] G. Qu, A. Wierman, and N. Li, “Scalable reinforcement learning of localized policies for multi-agent networked systems,” in Learning for Dynamics

and Control. PMLR, 2020, pp. 256–266.
[46] A. Lamperski, “Computing stabilizing linear controllers via policy iteration,” in 2020 59th IEEE Conference on Decision and Control (CDC). IEEE,

2020, pp. 1902–1907.

Gangshan Jing received the Ph.D. degree in Control Theory and Control Engineering from Xidian University, Xi’an, China, in
2018. He was a research assistant and a postdoctoral researcher at Hong Kong Polytechnic University, Hong Kong and Ohio State
University, USA in 2016-2017 and 2018-2019, respectively. He was a postdoctoral researcher at North Carolina State University,
USA, during 2019-2021. Since Dec. 2021, he has been a faculty member in School of Automation, Chongqing University. His
research interests include control, optimization, and machine learning for network systems.

He Bai received his Ph.D. degree in Electrical Engineering from Rensselaer Polytechnic Institute, Troy, NY, in 2009. From 2009
to 2010, he was a postdoctoral researcher at Northwestern University, Evanston, IL. From 2010 to 2015, he was a Senior Research
and Development Scientist at UtopiaCompression Corporation, Los Angeles, CA. In 2015, he joined the School of Mechanical and
Aerospace Engineering at Oklahoma State University, Stillwater, OK, where he is currently an associate professor. His research
interests include distributed estimation, control and learning, reinforcement learning, nonlinear control, and robotics.

Jemin George received his M.S. (’07), and Ph.D. (’10) in Aerospace Engineering from the State University of New York at Buffalo.
Prior to joining ARL in 2010, he worked at the U.S. Air Force Research Laboratory’s Space Vehicles Directorate and the National
Aeronautics, and Space Administration’s Langley Aerospace Research Center. From 2014-2017, he was a Visiting Scholar at the
Northwestern University, Evanston, IL. His principal research interests include decentralized/distributed learning, stochastic systems,
control theory, nonlinear estimation/filtering, networked sensing and information fusion.

24

Aranya Chakrabortty received the Ph.D. degree in Electrical Engineering from Rensselaer Polytechnic Institute, NY in 2008.
From 2008 to 2009 he was a postdoctoral research associate at University of Washington, Seattle, WA. From 2009 to 2010 he was
an assistant professor at Texas Tech University, Lubbock, TX. Since 2010 he has joined the Electrical and Computer Engineering
department at North Carolina State University, Raleigh, NC, where he is currently a Professor. His research interests are in all
branches of control theory with applications to electric power systems. He received the NSF CAREER award in 2011.

Piyush Sharma received his M.S. and Ph.D. degrees in Applied Mathematics from the University of Puerto Rico and Delaware State
University respectively. He has government and industry work experiences. Currently, he is with the U.S. Army as an AI Coordinator
at ATEC, earlier a Computer Scientist at ARL. Prior to joining ARL, he worked for Infosys’ Data Analytics Unit (DNA) where his
role was a Senior Associate Data Scientist. He has a core data science experience and has been responsible for Thought Leadership
and solving stakeholders’ problems, communicating results and methodologies with clients. His principal research includes Multi-
Agent Reinforcement Learning (MARL), Multi-Modality Learning in Multi-Agent Systems (MAS), decision-making, and Internet of
Battlefield Things (IoBT): a growing area for gathering reliable and actionable information from various sources in Multi-Domain
Operations (MDO). His recent research work appeared in ARL NEWS ¡ https://www.army.mil/article/258408 ¿

	I Introduction
	II Stochastic ZOO via Multi-Agent Networks
	II-A Stochastic ZOO
	II-B Multi-Agent Stochastic Optimization

	III Distributed ZOO with Asynchronous Samples and Updates
	III-A Block Coordinate Descent
	III-B Gradient Estimation via Local Cost Evaluation
	III-C Distributed ZOO Algorithm with Asynchronous Samplings
	III-D Convergence Result
	III-E Variance Analysis

	IV Application to Distributed RL of Model-Free Distributed Multi-Agent LQR
	IV-A Multi-Agent LQR
	IV-B Local Cost Function and Learning Graph Design
	IV-C Distributed RL Algorithms for Multi-Agent LQR
	IV-D Convergence Analysis

	V Simulation Experiments
	V-A Optimal Tracking of Multi-Robot Formation
	V-B Simulation Results

	VI Conclusion
	VII Appendix
	VII-A Analysis for the Asynchronous RL Algorithm
	VII-B Analysis for Application to Multi-Agent LQR

	References
	Biographies
	Gangshan Jing
	He Bai
	Jemin George
	Aranya Chakrabortty
	Piyush Sharma

