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Consensus of Multiagent Systems With
Distance-Dependent Communication Networks

Gangshan Jing, Yuanshi Zheng, and Long Wang

Abstract—1In this paper, we study the consensus problem
of discrete-time and continuous-time multiagent systems with
distance-dependent communication networks, respectively. The
communication weight between any two agents is assumed to
be a nonincreasing function of their distance. First, we consider
the networks with fixed connectivity. In this case, the interaction
between adjacent agents always exists but the influence could
possibly become negligible if the distance is long enough. We show
that consensus can be reached under arbitrary initial states if
the decay rate of the communication weight is less than a given
bound. Second, we study the networks with distance-dependent
connectivity. It is assumed that any two agents interact with each
other if and only if their distance does not exceed a fixed range.
With the validity of some conditions related to the property
of the initial communication graph, we prove that consensus
can be achieved asymptotically. Third, we present some appli-
cations of the main results to opinion consensus problems and
formation control problems. Finally, several simulation examples
are presented to illustrate the effectiveness of the theoretical
findings.

Index Terms— Formation control, multiagent systems, opinion
dynamics, rendezvous, state-dependent graph, switching
networks.

I. INTRODUCTION
A. Motivation

ISTRIBUTED coordination of systems with multiple

agents has attracted much attention from different
research communities in recent years. In these systems, agents
interact with each other via a communication topology and
only employ local information. As a result, in order to
drive them to accomplish tasks, a distributed control law is
required. Multiagent systems have a wide range of applica-
tions, since they can perform a variety of collective behaviors,
including formation of unmanned aerial vehicles [1]-[5], atti-
tude adjustment of spacecrafts [6], and flocking of multiple
robots [7], [8], to name but a few. As a typical paradigm of
these challenging topics, the consensus problem has been stud-
ied for a long time [9], [10]. Consensus is said to be reached
if a group of agents agree upon a certain quantity of interest
depending on their states. In the literature, the consistent value
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might represent physical quantities, such as position [11], [12],
heading angle [13], opinion [14]-[19], or temperature [20].

B. Related Work

Due to unreliable communication, limited sensing range,
or heterogeneity of different agents, consensus problems are
often considered under a switching communication graph.
To date, there have been numerous results related to this
issue [21]-[32]. However, all these results are concerned
under an assumption that the switching communication graph
is time-dependent. In reality, multiagent systems are often
subject to distance-dependent communication networks. For
instance, in formation control of mobile robots, every robot
can only interact with others within its sensing range due to
the limitation of visibility [12]. Another example is Vicsek’s
swarming model [33] established for the observed collective
behavior in nature. In the model, all agents keep the same
speed but different headings. Every agent updates its heading
by averaging headings of the agents who stay close to it.
In such circumstances, the communication graph is dependent
on agents’ relative states. The information transmission weight
between the adjacent agents varies with their distance, which
leads to the fact that the connectivity of the communication
network can be possibly broken due to the motion of agents.
As a result, consensus cannot be guaranteed. Although
distance-dependent communication graphs can be viewed as
a case of time-varying communication graphs studied in [29],
we believe that the consensus model under distance-dependent
interactions has its specific properties and remains to be
further studied.

A few experimental and theoretical efforts have been carried
out on coordination control with distance-dependent commu-
nication networks. In [34], the Cucker—Smale (C-S) flocking
model via a transmission weight depending on the Euclidean
distance between agents is investigated. The weight is designed
like gravity, i.e., as the distance between any two agents
increases, the information that they receive from each other
weakens but always exists. That is, the communication graph
is always complete. The authors’ research shows that conver-
gence can be achieved under a condition on the initial states,
which is really different from the previous results of systems
in time-dependent switching networks. A model of opinion
dynamics is introduced in [15]. It describes the evolution of a
number of opinions belonging to a group of interacting agents.
An agent interacts with another agent if their opinions differ
by less than a fixed value. Several results related to opinion
dynamics have been conducted to show the convergence [14],
[16], [17]. Similarly, the rendezvous problem of multiagent
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systems also involves the uncertainty of the network connec-
tivity [11], [12], [35]. In their works, the protocol moves every
agent toward a computed target point at each time instant.
By limiting the allowable motion of each agent, the net-
work connectivity is maintained. In addition, the information
transmitted between the adjacent agents in [36] and [37] is
influenced by their state difference. However, all the afore-
mentioned investigations are discussed without giving consid-
eration to connectivity maintenance under a simple consensus
algorithm. Yang et al. [18] presented a sufficient condition for
consensus of the continuous-time opinion formation model by
limiting the number of common neighbors shared by any two
agents. Nevertheless, this condition remains to be relaxed if the
distribution of the opinions at the initial time is uneven. All the
above investigations are related to multiple agents with single-
integrator dynamics. In problems of flocking, rendezvous,
and formation control, the control input of a robot is often
considered as its acceleration rather than speed. As a result, it
is also significant to study the consensus problems for double-
integrator agents under the distance-dependent interactions.
In engineering applications, due to the limited bandwidth
of networks, the control input of a continuous-time system
may use the data sampled at discrete time instants. In such
circumstances, the system should be described as a discrete-
time model. This motivates us to investigate discrete-time
multiagent systems with the second-order dynamics.

C. Our Contributions

Out of the above-mentioned situation, this paper studies
the consensus problem of multiagent systems with a gen-
eral distance-dependent communication weight. Both discrete-
time and continuous-time dynamics are considered. For each
case, two types of distance-dependent communications are
investigated. In the first networks, we fix the connectivity
of the communication topology, whereas the communication
weight between the adjacent agents always varies with their
distance. Such a communication network includes the one
considered in the C-S flocking model as a special case.
By constructing novel Lyapunov functions, it is found that
under a connected communication graph, consensus can be
globally reached except for continuous-time multiagent sys-
tems with double-integrator dynamics applying the dynamic
consensus protocol. This is inconsistent with the intuition that
preserving connectivity is sufficient for reaching consensus.
In the above special case, the communication weight should
satisfy some specified condition for the realization of con-
sensus. In the second type of networks, we assume that the
communication graph is fully dependent on the interdistance of
the agents. That is, the network connectivity is also distance-
dependent and may be broken as the system evolves. Different
from [14] and [16], the conditions presented in this paper
can make all agents rather than the agents in each connected
component asymptotically reach consensus. Compared with
the results in [18], our conditions do not limit the number of
common neighbors shared by any pair of agents and are more
relaxed if there are large differences between several opinions
at the initial time.
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In this paper, we assume that the interaction between adja-
cent agents decays as their distance increases. This assumption
can be removed in several circumstances. Our results are
applied to solving opinion consensus problems and formation
control problems.

Notation: Throughout this paper, we denote the set of real
numbers by R, the set of positive real numbers by R, and
the set of nonnegative real numbers by R-. Let R" be the
n—dimensional Euclidean space and | - || be the Euclidean
norm. X7 stands for the transpose of matrix X and |V| is the
cardinality of set V. s (x) denotes the orthogonal projection
of x onto space M. dim(M) is the dimension of space M.
® represents the Kronecker product. For a symmetric matrix
A € R"™" 1;(A) denotes the ith eigenvalue of A, ie.,
A(A) < -+ < 2,(A). Hyp(A) denotes the set of all eigen-
vectors of matrix A corresponding to zero eigenvalue. {i, j}
denotes a vertex set, including the ith vertex and the jth vertex.
x| is the largest integer not greater than x and [x] is the
smallest integer not less than x.

II. PROBLEM FORMULATION
A. Preliminaries of Graph Theory

We use a graph G = (V, &€, A) to denote the communication
relationship between the agents. V = {l,...,n} is a set
denoting n agents in the system. &£ is the set of edges, and
each edge is denoted by a pair of agents, i.e., (i, j). In this
paper, we propose a matrix G = [g;;] € R"*" to show the
distribution of communication links in the network. That is,
gij = 1if (j,i) € & and g;; = O otherwise. The set of
neighbors of Agent i is denoted by N; ={j | gij = 1, j € V}.
A = [a;j] € RY" is a matrix describing the weight of
information flow between agents, in which a;; denotes the
information transmission weight between agents i and j.
A graph G is undirected if G and A are both symmetric
matrices. We use a diagonal matrix A = [A;;] with A;; =
> jeyaij to show the degree of each agent, and the Laplacian
matrix of graph G is defined by L = A — A. By Gerschgorin’s
theorem, it can be easily proved that L is a positive semi-
definite matrix. In this paper, the communications between
the agents may be always changing as agents’ states evolve.
Hence, we use L, to denote the Laplacian matrix according
to state x for continuous-time multiagent systems, and L; to
denote the Laplacian matrix at step ¢ for discrete-time multi-
agent systems. A path from i to j in graph G is a sequence
of distinct edges of the form (i, i2), (i2,63), ..., (ik—1, ik),
where iy =i, iy = j,and (i, i,+1) € Eforr e {1,...,k—1}.
A graph is said to contain a directed spanning tree if it is
directed, and there exists a vertex called the root, such that
every other vertex in the graph is connected with the root by a
path starting from the root. A graph is said to be connected if it
is undirected, and there exists a path between any two distinct
vertices of the graph. Two paths are said to be disjoint if they
have no common edges. Throughout this paper, we always
assume that graph G is undirected unless otherwise specified.

The connectivity of graph G, written by x(G), is the
minimum size of a vertex set S, such that G’ = (V -8, &', A)
is disconnected or has only one vertex, where £ and A’ are
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the corresponding edge set and the adjacency matrix when
all the vertices in S are deleted from G. Therefore, x(G) can
be confirmed only by G. Furthermore, it is straightforward
to see that x(G) > 0 if and only if G is connected. Given
i,j € V(G),aset S C V() —{i,j}is an i, j—cut if after
deleting all vertices of S from G, no path between i and j
exists in the graph.

B. System Models

For discrete-time multiagent systems, we consider the
agents with both the first-order dynamics

xi(t +1) = x; (1) + ui (1),
and the second-order dynamics

xi(t +1) = xi (1) + kivi (1)

vit +1) = vi (1) +ui (1),

where k1 > 0 is the control gain.
For continuous-time multiagent systems, agents with both
single-integrator dynamics

ieV (1)

ieV 2)

Xi=u;, i€V 3)
and double-integrator dynamics

Xi = v;

O =u;, i€V 4)

are considered.

In the above systems, x; € R™ and v; € R™ denote the
position-like state and the velocity-like state of Agent i,
respectively, and u#; € R™ is the control input applying to
Agent i, where m is a positive integer. In this paper, ||x; — x|
is considered as the distance between Agents i and j. Let
E = R™, then x =(x1T,...,an)T, v = (vlT,...,vZ)T e E".
In the following, a matrix in R"*" may act on E”. That is,
Ax = (A® Iy)x for A € R"™, x € E". We say that
the consensus problem is solved if x converges into
M = span{l, ® r | r € E} as t — oo. In particular, if M =
{1, ® ((1)/(n)) 2_;cy xi(0)}, the average consensus is said to
be solved. Let ¢; denote the canonical vector with a 1 in the

ith entry and 0’s elsewhere. Note that e;, i = 1, ..., m are the
standard orthogonal bases of R™. Then, f; = ((1)/(/n)1, ®
ej, i = 1,...,m are the standard orthogonal bases of M.

Therefore, the orthogonal projection of x onto M is

m

() = D (x, i) fi

i=1
m 1 1
= 2{ tea) e
1
= ln ® ; Z)Ci.

ieV
We set p = x — wy(x) and ¢ = v — wp(v), then consensus
is reached if and only if ||p|| — 0 and ||g|| = 0 as t — oo.

C. Useful Lemmas

Several lemmas associated with graphs and matrices are
listed as follows.
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Lemma 1 [26]: If the communication graph G is con-
nected, then Ho(L ® I,,) = span{l, @ r | r € E} = M,
where L is the Laplacian matrix of G.

Lemma 2 [38]: Given a positive semidefinite d x d matrix
A with a simple zero eigenvalue, we have xT Ax > A2 (A)||lx —
7 Ho(4) (X)|1%, for any x € RY.

Lemma 3 [34]: For all x € E", L € R" is the Laplacian
matrix of a graph, we have the following.

D lxi —xjll = lpi — pil < V2llpl.

2) (1)/2n) Xicy X jey Ixi = x;17 = lIpl*.

3) (x, Lx) = (D/Q) Xiey X jevaij () llxi = xj]1> = 0.

Lemma 4: Suppose that the connectivity of graph G is
k(G) = k* > 0, then there exist at least k* disjoint paths
between any different vertices.

Proof: See the Appendix. |

Lemma 5: 1f there are less than n — 1 pairs of disconnected
vertices in graph G, then G is connected.

Proof: See the Appendix. [ ]

III. CONSENSUS OF DISCRETE-TIME
MULTIAGENT SYSTEMS

We study the consensus problem of discrete-time multiagent
systems in this section. By using Lyapunov methods, several
consensus criteria are obtained.

A. Distance-Dependent Communication Weight

We consider two classes of communication networks. The
first case is of fixed connectivity, which implies that G
and x(G) are invariant. The communication weight between
Agents i and j is set by a;; = gija(||lx; — xj||2), where a.(s)
is a positive function, which decays as s increases. For Agent
i, the information that it receives from Agent j can be denoted
by gija(|lx; —xj||2)(x,- —x;). Assumption 1 is made for a(-).

Assumption 1: a(-) R>p — R.o is nonincreasing,
a(0) < oo.

In the second case, the distribution of agents’ states totally
determines the communication graph and in turn determines
the connectivity of the network. More specifically, the
communication weight between i and j is a;; = gija(|lx; —
xj||2) = o(||lx;i — xj||2), because g;; = 1 if and only if
o(|lx; — xj||2) # 0. Here, a(-) satisfies Assumption 2.

Assumption 2: o(-) R>p — R is nonincreasing,
0 < a(0) < oo, a(s) > a* for some constant o™ > 0 if
s < R%, a(s) =0 if s > R?, where R € R is a constant.

For the sake of simplicity, we denote a(|lx; — x j||2) by
a;j(x) in the rest of this paper.

B. Lyapunov-Like Function

Now, we establish a function w(z) : Rsg — Rso for
constructing Lyapunov functions in the following:

a(r)z, 0<z<r

L7]

S o)D) <=

s=1

w(z) =

where a(-) is a nonincreasing function and r is a positive
constant.
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Fig. 1. w(z) with r =1 and z = 3.5.
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Fig. 2. w(z) with r =1 and z =0.5.

For better understanding w(z), we present an example to
express the relationship between w(-) and a(-). Let r = 1,
the area of the shaded part in Fig. 1 is equal to w(3.5),
and the one in Fig. 2 is equal to w(0.5). For simplicity, we
define x;j (1) = x;i(t) — x;(®), Wij (1) = w(|lx;j(1)]*), and
W(t) = (1/2) 2icp 2 jey ij Wij (). Proposition 1 shows
some properties of W.

Proposition 1: For any z > 0, the following statements
hold.

1) Suppose that the communication graph G contains a
directed spanning tree. Then, W () = 0 if and only if
x;=xj forany i, jeV.

2) For a fixed r, w(z) is increasing of z.

3) Forallt >0

1
Wa+1) = W) < 5> > 8ijoij (x(1))
ieV jeV
x (Ilxi; (¢ + DI = llxi; OI%). (5)

4) lim, o w(z) = [y a(s)ds for 0 <z < oco.
5) If a;j = a(llxi — xj||2) satisfies Assumption 2, and
W(t) < (n—1)w(R?) for some r € (0, R?), then graph
G(¢) is connected.
Proof: See the Appendix. [ ]
Remark 1: We can see that w(z) is the approximation of
foz a(s)ds in some sense. With the decreasing of r, w(z) is
closer to [ a(s)ds. Actually, when we let w(z) = [; a(s)ds,
1)-3) in Proposition 1 also hold. The corresponding proof is
similar. In the rest of this paper, we define w(z) = foz a(s)ds
for r = 0.

C. Consensus in Networks With Fixed Connectivity

When a;; satisfies Assumption 1, a long distance between
a pair of agents may cause their interactions to be slight and
not effective. For reaching consensus, we hope to obtain a
bound of the distance between any agents. In the results, we
will see that the boundedness of ||p] is the key to solve the
consensus problem. Once | p| is guaranteed to be bounded,

2715

Lemma 6 shows that the algebraic connectivity of the
communication graph, written by 12(L), has a positive lower
bound.

Lemma 6: Under Assumption 1, if || p(7)| is bounded, and
the communication graph is connected. Then, 12(L;) has a
positive lower bound.

Proof: See the Appendix. |

For agents with dynamics (1), the consensus protocol is
given by

n
ui(t) =h Y gijoy (x()(x;(t) = xi (1) (6)
j=1
where 4 > 0 is the control gain, i € V.

Theorem 1: Consider a system consisting of n agents
with dynamics (1). Under Assumption 1, protocol (6) glob-
ally asymptotically solves the average consensus problem
if the communication topology is connected and h <
(1/(dmax2(0))), where dpnax is the maximum degree among
all agents.

Proof: The discrete-time multiagent system (1) with
protocol (6) can be written as

p(t+1) = p(t) —hL;p(t).

Consider V() = ||p(r)||> as a Lyapunov function. It holds
that

V(e+1) = V() = pT ()T —hL)*p(t) — p" (1) p(t)
= pT(=2hL, +h*L})p
=—p Eip.

The eigenvalues of E; are denoted by & = 2hl;(L;) —
hleiz(L,) = hli(Ls)(2 — h2;i(Ly)). From Gerschgorin’s the-
orem, A; (L) < max;ep{2 2 ;cn; ¢ij (¥)} < 2dmaxa(0). Then,
hii(Ly) —2 < (1/(dmax@(0))) + 2dmaxa (0) — 2 = 0, it suffices
to show that V(r + 1) — V(1) = —pTZ,p < 0. We use
Lemmas 1 and 2 to obtain that

V(ie+1) = V() < —E)p — tryEen (P)I
= —2(E)lplI?* < 0.

Clearly, ||p|| is bounded by || p(0)||, it results from Lemma 6
that A»(L;) > ¢ for some ¢ > 0. Then, & > hc(2 — h -
2dimax.(0)) = ¢y > 0 for i # 1 and & = 0. Now, we have
V(+1)—=V(@) < —clpl* <0if [ pl|l # 0. Hence, || p|| — 0
as 1 — oo. Note that >, .y, x;(t + 1) = >, x;(¢) in every
step, which results in lim,_ o0 x; (1) = ((1)/(n)) > ;cy Xi (0).
Together with the radial unboundedness of V, consensus is
achieved globally asymptotically. [ ]

For agents with dynamics (2), we propose the following
protocol:

n
ui(t) = —kovi (1) + k3 D gijouj (x (1) (x (1) — x; (1)) (7)
j=I
where ky > 0 and k3 > O are the coupling strengths, i € V.
Theorem 2: Consider a system consisting of n agents with
dynamics (2). Under Assumption 1, suppose the commu-
nication graph is connected, and the following conditions
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for k1, ko, and k3 are satisfied:

ko < min{2, k; + 1} (8)
X . I k2 (2 — k2) ko ]
3 < min , :
2dmaxa (0)ki (k1 — ko + 1) dmaxa(0) (k1 + 1)
C)
Then, protocol (7) globally asymptotically solves the

consensus problem.
Proof: The discrete-time multiagent system (2) with
protocol (7) can be rewritten as

pt+1) = p(t) +kig(t)
qt +1) = q(t) — kag(t) — k3L, p(2).

Consider the following function as a Lyapunov function
candidate:

V(0) = lkap + kigl* + killgl* + ks(ky + 1 — ko) W ().
(10)

By Proposition 1, we have

Vie+1)— V(@)
< llkap(t +1) + kig(t + DI* = Ikap(6) + kig (@)
+killg@ + DI* —killg@)|?
+hkiks (ki +1 = ka)q" Lig
+2kiks(ki + 1 — k) p” Lig
= q" [kika(ka — 2)1 + kiks(ky + 1 — k2)L¢]q
+p"[ = 2kikaks Ly + (K} + ki)k3 L] p
=—q"Zuq — p" Exup.
It is easy to see that —g’ Z1,g — pT Eo;p < 0 as long as the
following inequalities hold for any i € V:

kika(ka —2) + k3kz(ky + 1 — ko)A (Ly) < 0
—2kikoks + (kf + k1)k3 (L) < 0. (11)

By Gerschgorin’s theorem, it holds that A;(L;) <
max;ep{2 > @ij ()} < 2dmaxa(0). This implies that (8)
and (9) ensure the validity of (11). Consequently, V(¢ +
1) = V(@) = 0. Since |lkopll =< lkap + kigll + llkigll <
2V () < 2JV(0), by Lemma 6, A(L;) > ¢ for some
¢ > 0. Let fl./, i = 1,...,n be the eigenvalues of =j;.
From (9), & = [2kikoks — (kf + kK32 (L)1Ai(L) =
[2ki1kaks — (kT + k1)k32dmaxa(0)]c = 2 > 0,0 = 2,...,n,
and 51/ = 0. That is, the zero eigenvalue of E,, is simple and
all the other eigenvalues have a positive lower bound ¢;. By
Lemma 2, it holds that V (r+1)— V() < —k1ka(2—k2)lg > —
c2llpll?, implying that V(r + 1) — V(t) = 0 if and only if
Ipll=lgll = 0.

Using ko < ki + 1, we have 'V > |kap + kig| >
lkapll = llkigll, and 'V = Vkillgll. Then, V'V + 2k V >
k2l pll + k1llgll. To show the radial unboundedness of V, it
suffices to show that if ||p||> + ||¢]|> — oo, it holds that

_ min{ka, K}l + llg 1)
= (14 2Vk))?

By Lyapunov stability theory, || p||, |l¢|| — 0 as t — oo under
arbitrary initial states. That is, both the position-like states and
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the velocity-like states of the agents globally asymptotically
achieve consensus. |

Remark 2: a;;(-) in this section can be different for dif-
ferent pairs of agents and each one satisfies Assumption 1.
In this case, let amax(0) = max; jey a(0). For system (1)
with protocol (6), once the condition of 4 is changed to
h < ((1)/(dmax@max(0))), Theorem 1 can be valid. For
multiagent system (2) with protocol (7), it holds that W(¢) =
(1)/(2) Xiey 2 jey gijwij (Ixij (1)]1?). By following similar
lines to the proof of Theorem 2, we can obtain the same result
as Theorem 2 except for replacing o (0) with omax (0) in (9).

D. Consensus in Networks With Distance-Dependent
Connectivity

In networks with distance-dependent connectivity, the con-
nectivity of the communication graph is possibly broken due
to the evolution of agents. For reaching consensus, we hope
that the connectivity can be maintained. In the following, we
will seek a minimal level of an energy function related to
the agents’ initial states for the maintenance of connectivity.
It is shown that under a dense distribution of the agents’ initial
states, consensus can be asymptotically reached. Before going
into the details, we introduce Lemma 7.

Lemma 7: Under Assumption 2, if the communication
graph G(¢) is connected for any r > 0, then A;(L;) has a
positive lower bound.

Proof: See the Appendix. |

Theorem 3: Consider a system consisting of n agents
with dynamics (1). Under Assumption 2, suppose h <
(1/((n — 1)a(0))), and there exists an r € [0, R?), such that

W) < (n — Dw(R?). (12)

Then, protocol (6) asymptotically solves the consensus
problem.

Proof:  For any t
Proposition 1:

W +1)—W(@)

> 0, the following holds from

uTL,u +2xTL,u
= hszL?x — 2thLt2x.

IA

By Gerschgorin’s theorem, 4;(L;) < 2(n — 1)a(0). Together
with i < (1/((n — 1)a(0))), we have h1;(L;)—2 < 0. Hence,
h?33(Ly)—2h33(Ly) < 0, which implies that W(r) < W(0) <
(n — 1)w(R?). From Proposition 1, G(r) is connected for any
t > 0. It follows from Lemma 7 that 12(L;) > ¢ > 0 for some
¢ > 0. Then, 4;(E;) > hc(2 = 2h(n — D)a(0)) = ¢] > 0 and
(&) =0.

Consider V(1) = || p(¢)||* as a Lyapunov function candidate.
Through a similar process to the proof of Theorem 1, one has
V(e +1) = V() = p'(=2hL, + W’ LYp < —=clplI* < 0
if ||pll # 0. By the Lyapunov stability theory, ||p|| — O as
t — oo. That is, consensus is reached asymptotically. |

Theorem 4: Consider a system consisting of n agents with
dynamics (2). Under Assumption 2, suppose that k1, kp, and k3
satisfy (8) and

k3 < min

ko(2 — k2) ko ]
2(n—Da(0)k1 (ki —ko+1)" (n—Da(0)(ky + 1) |
(13)
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And there exists an r € [0, Rz), such that

k2 p(0) + k1g(O)|I* + k1llgO) I* + (k1 + 1 — k2)k3 W (0)

< (k1 + 1 = k)ks(n — Dw(R?). (14)

Then, protocol (7) asymptotically solves the consensus
problem.

Proof: Suppose condition (14) holds. Let g;; = 1 for
any i, j € V, (10) is considered as the Lyapunov function
candidate. By following the same lines as in the proof of
Theorem 2, we have A(L;) < 2(n — 1)a(0), and the validity
of (8) and (13) leads to the fact that V(t + 1) — V(¢) =
—qT 21,9 — pT 22, p < 0. Therefore, for any ¢ > 0

V() < V(0) < %(kl + 1 — k)ks(n — Dw(R?).

Asaresult, W(t) = (1/2) > ;cp Zjev Wi (1) < (n—1w(R?)
for all + > 0. Proposition 1 shows that G(r) is always
connected. From Lemma 7, A;(L;) > ¢ for some ¢ > 0.
It follows that A;(E2) = [2kikoks — (/’cl2 + kl)kgii(Lt)]
2i(Ly) = [2kikoks — (k3 + k1)k32(n — Da(0)]c = ¢ > 0,
i = 2,...,n, and A1(Ey) = 0. As a result,
V@i +1) = V(@) < —kik@2 — k)lgl* = c2llpll. Since
ko <2, V(t+ 1) — V() is negative definite. It follows from
the Lyapunov stability theory that || p||, |lg|| — 0 as t — oo.
That is, consensus is achieved asymptotically. [ |
Remark 3: Under Assumption 2, if r = RZ, then
w(R?) = 0, and (12) and (14) can never be satisfied. There-
fore, r < R? is indispensable in Theorems 3 and 4. Moreover,
if r changes, (12) or (14) may be not valid. Although a
smaller » makes w(R?) greater, but it does not hold that a
smaller r makes it easier for the conditions to be satisfied.

IV. CONSENSUS OF CONTINUOUS-TIME
MULTIAGENT SYSTEMS

A. Continuous Distance-Dependent Communication Weight

Like the discrete-time case, we utilize a function a(-) to
interpret the relationship between the transmission weight
and the distance. To ensure the Lipschitz continuity of the
control input, the previous assumptions for a(-) are modified
as follows.

Assumption 3: a(-) : Rsg — R.q is Lipschitz continuous
and nonincreasing, a(0) < oo.

Assumption 4: a(-) : R=o — Rxq is Lipschitz continuous
and nonincreasing, a(0) < oo, a(s) > 0 if s < R%, a(s) =0
if s > R%, where R € R.o is a constant.

B. Consensus in Networks With Fixed Connectivity

For agents with dynamics (3), the following protocol is
studied:

wi = gijouj (x)(x; — x;)

jev

15)

where i € V. Since the communications between any two
agents are symmetric, the cut-balance condition proposed
in [29] is satisfied. Therefore, under Assumption 3, if the
initial communication topology is connected, consensus
can be achieved due to the fact that the connectivity
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is invariant. Actually, by differentiating the energy function
V = ((1)(2)) || p|I*> with respect to ¢, it is easy to obtain that
Il is bounded by | p(0)|. As with the discrete-time case,
the positive lower bound of 1;(Ly) that can be concluded
from Lemma 6 finally guarantees the consensus result.

For agents with dynamics (4), the static consensus protocol
is first studied

u; = —kv; + z gijaij (x)(xj — x;)
Jjev

(16)

where k > 0 is the feedback gain, i € V.

Theorem 5: Consider a system consisting of n agents with
dynamics (4). Suppose the communication topology is con-
nected and Assumption 3 is satisfied. Then, protocol (16)
globally asymptotically solves the consensus problem. In par-
ticular, if the sum of the initial velocity-like state of each agent
is zero, the average consensus problem is solved.

Proof: ~ Consider the following Lyapunov function
candidate:
) ) llxi—x; 12
Voo =tk 4ol P+ X3 [ ayods
0

ieV jeV
(17)
where a;;(s) = gija(s). To show the radial unboundedness of

V(x,v), we let ||x||> + |[v]|> — oc. Note that /V(x,v) >

lkx + o] and /V(x,0) > |lo|, implying that 3,/V (x,v) >
kx|l = lloll + 2lloll = llkx|l + llv|l, therefore

V(x,v)

\%

1
g (lkxll + lol)?

v

1
5 min{k%, 1}(||lx[1> + llo]*) — oc.

The derivative of V(x, v) along the trajectories of the agents
is given by

V = 2(kx +0)" (kv — kv — Lyx) + 207 (—kv — Lyx)
+2 z z ijaij () (i —x)T (0 —0))
i€V jeV
= —2kxT Lyx —2koTv <0.

Then, we obtain a positively invariant set, i.e., Q(x,v) =
{x,o | V(x(r),v(r)) < V(x(0),v(0))}. It remains to show
the compactness of Q. Indeed, since V is continuous,
V=10, V(x(0), v(0))] is closed. Recall the radial unbound-
edness of V, Q is compact. Due to the Lipschitz continuity
of the right-hand side of (16) and the fact that the system
is autonomous, LaSalle’s invariance principle can be used.
Therefore, V — 0 ast — oo. Due to the connectivity
of graph G, Lemma 1 shows that x converges into M, and
o] — 0 as t — oo.
~Moreover, let U(x,v) = > ;cvi + k2 ;) xi, we have
U= ~k2ep + ey 2jey(¥j = Xi) + k2 cpv = 0.
That is, U (x*, 0™) = U (x(0), v(0)), where x* is the consensus
position-like state of each agent. Therefore, it can be obtained
that x* = ((X;cp 0i (0) + k 3,0y x: (0)) /nk).

If >,y 0i(0) = 0, one has x* = (1/n) > .y, xi(0), ie.,
the average consensus is achieved. [ ]
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Now, we consider the dynamic consensus protocol

wi =Y gijoij ()wj —vi)+ D gijoij(¥)(x; —x;)  (18)
JjeVy JjeVy
where i € V.

Protocol (16) makes the velocity-like state of each agent
vanish to zero for arbitrary initial value, and thus always
keeps the distance between any two agents constant at steady
state even if consensus is not reached. Hence, the compactness
of Q can be unconditionally guaranteed. However, each agent
applying protocol (18) may obtain a nonzero velocity in the
end, and as a result, the distance between the agents can be
unbounded. To achieve global convergence, a condition for
o.(+) is required to be appended.

Theorem 6: Consider a system consisting of n agents with
dynamics (4). Suppose fooo a(s)ds = oo and Assumption 3 is
satisfied. If the communication topology is connected, then
protocol (18) globally asymptotically solves the consensus
problem.

Proof: It is clear that x and v in the multiagent system (4)
with (18) can be replaced by p and g. We consider the
following energy-like function:

a2+ X
Vip.q) = lqll +2ZZ/O

ieV jeV

lpi—p;ill?

ajj(s)ds. (19)

Differentiating V(p,q) along the trajectories of agents,
one has

V(p,q) =2q" (~Lyp — L+q)
+ D> giei (p)pi = p) (i — a))
ieV jeV
= —ZqTqu <0.

Then, the set Q = {p,q|V(p,q) < V(p(0),q(0))} is posi-
tively invariant. To show the compactness of €, it suffices to
show the boundedness of || p|| and ||¢||. Suppose || p(t)|| = oo
as t — t*, t* > 0 (t* can be infinite). From Lemma 3,
there exist a pair of agents, i.e., Agents i and j, such that
lxi — xjl — oo as t — t*. Due to the connectivity
of the communication graph, there exists a path including
(i,i1), ..., (s, j). Note that |x; — x;|| < llx; —x; | +--- +

lx;; — x;ll. Therefore, there exists a constant k € {1,...,s},

such that || pi, — pi, Il = llxi, — xi, || = oo. This yields
Ipi—pjl* Nl =i,y 112

ZZ/ gija(s)ds 2/ a(s)ds — oo

ieV jeVy 0 0

as ¢t — t*, which conflicts with V(p,q) < V(p(0),q(0))
for all + > 0. Thus, ||p(¢)|| is bounded. It is clear that
llglI? is bounded by V(p(0), g(0)), together with the closed-
ness of V~1(0, V(p(0),4(0))), and it follows the radial
unboundedness of V(p, ¢g) and the compactness of Q. Due
to the Lipschitz continuity of the right-hand side of (18)
and the fact that the system is autonomous, we can employ
LaSalle’s invariance principle. Hence, p and ¢ converge into
{V(p,q) = 0} as t — oo. From the connectivity of the
communication graph and Lemma 1, we have ||g; — gl — 0
for any i,j € V, as t — oo. From Lemma 3, we have
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lim; o ||l = lim;—oo g = 0, implying that both p and ¢
are fixed at the steady state. It suffices to show that

lim;— oo lg]l = 0. Hence, lim; 0 || — Ly pll = lim;— oo [Ig +
Lyxql|l = 0. Therefore, we obtain ||p|| — 0 as t — oo. That
is, consensus is asymptotically reached. [ ]

The condition for «(-) is actually for the decay rate of
the communication. It is clear that the faster a(-) decays,
the more difficult the condition is satisfied. In fact, when
fooo a(s)ds < oo, protocol (16) solves the consensus problem
if the initial states of all agents satisfy an inequality. See
Corollary 1.

Corollary 1: Consider a system consisting of n agents with
dynamics (4). Under Assumption 1, suppose fooo a(s)ds < oo,
the communication graph G is connected and the following
inequality holds:

1
2
lg ()] +EZZ/0

ieV jeV

i ©)—p; O o0
gija(s)ds <k*/ a(s)ds
0

(20)

where k* is the connectivity of graph G. Then, protocol (18)
solves the consensus problem asymptotically.

Proof: We still consider the energy-like function (19),
and the next step is to show the compactness of Q =
{r.qlV(p,q) = V(p(0),q(0))}. Suppose |pll — oo, then
there exist a pair of agents, i.e., Agents i and j, such that
lpi — pjll = oo. By Lemma 4, there exist k* disjoint paths
between i and j. As the analysis in the proof of Theorem 6,
in each path, there exist at least one pair of adjacent agents
ir and ig41, such that ||p; — pi,, | — oo. Together with
inequality (20), we have

llpi (0)—p;(0)]?
V(p(©).40) = lgO P +5 3> /0 gija(s)ds

ieV jeV

k* /Oooa(s)ds

% Z Z/Olp,-—p,- 12

gijo(s)ds
ieV jeV

V(p,q)

which is a contradiction. Thus, || p|| is bounded for all # > 0.
We now proceed as in the proof of Theorem 6. [ ]

Remark 4: All the above results can be extended to general
cases. More specifically, a;;(-) can be different for different
values of (i, j) € £. Each a;;(s) is a continuous function of
s and is unnecessary to be nonincreasing. In this case, the
condition for a(-) in Theorem 6 is replaced by the condition
that there exists a spanning tree with £’ as the corresponding
set of edges, and fooo ajj(s)ds = oo for any (i, j) € &
If this is not valid, the initial states of the agents are required
to satisfy the following inequality:

1
O+ 5 Y Z/O

ieV jeV

A

IA

IA

llxi (0)—x; (0) ||
ajjo(s)ds

< k* min

o0
(i,neg/o @ij ($)ds

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on April 27,2022 at 03:45:48 UTC from IEEE Xplore. Restrictions apply.



JING et al.: CONSENSUS OF MULTIAGENT SYSTEMS WITH DISTANCE-DEPENDENT COMMUNICATION NETWORKS

where £’ is the set of edges associated with a spanning tree.
The proof is similar to that of Theorem 6 and Corollary 1, we
omit it here.

C. Consensus in Networks With Distance-Dependent
Connectivity

Theorem 7: Consider a system consisting of n agents with
dynamics (3). Under Assumption 4, suppose the following
inequality holds:

X (0)—x; ( 2 2
%ZZAl 0) 0l w()ds < (n 1)AR a(s)ds.

ieV jeV
(2D
Then, protocol (15) solves the average consensus problem
asymptotically.
Proof: ~ Consider the Lyapunov function V(x) =

((D)/)|Ix]I?, we have V(x) = —xTL,x < 0 and thus
lx| < [|x(0)]. It follows the compactness of the invariant
set {x|] V(x) < V(x(0))}. Due to the Lipschitz continuity
of the right-hand side of (15) and the fact that the system
is autonomous, LaSalle’s invariance principle can be invoked.
Thus, we have V(x) — 0 as t — oo. Then, x asymptotically
converges into Hyo(Ly ® I,) and lim;_, o, G(¢) is fixed.
We now consider the following function:

no=33 % |

ieV jeV

llx; —x; 1%

a(s)ds. (22)

Differentiating Vi (x) yields
Vite) = D> aij (o) —x))" (i —uj)

ieV jeV
= 2xTLxu

= —2[l%* < 0. (23)

For any ¢ > 0, it holds that

1 llxi () —x; ()|
533 /0 a(s)ds < Vi(x(0))

ieV jeV

R2
< (n— 1)/0 a(s)ds. (24)

This implies that there are less than n— 1 pairs of disconnected
vertices in graph G(¢). From Lemma 5, the communication
graph is always connected. Therefore, Hy(Ly ® I,,) = M, i.e.,
consensus is achieved asymptotically. [ |

For agents with dynamics (4), we have the following
result.

Theorem 8: Consider a system consisting of n agents with
dynamics (4). Under Assumption 4, suppose the following
inequality holds:

1
@I+ 5 Y Z/O

ieV jeV

R2
<(n-— 1)/0 a(s)ds.

[l (0)—x;(0) ||
a(s)ds

(25)
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Then, protocol solves the
asymptotically.

Proof: By following the same lines as in the proof of
Theorem 5, it holds that x converges into Ho(L, ® I,,) and
lo]] = 0 as r — oo, which implies that graph G is finally
fixed. For obtaining a relaxed criterion for consensus, we

consider the energy function (19) by replacing p and g with

(16) consensus problem

x and o. It is easy to know V= —2k||v||* < 0. Therefore, for
any t > 0
1 llxi (6)=x; ()12
P a(s)ds < V(@)
: 0

= V()

R2
(n— 1)/0 o(s)ds

which implies that there are less than n — 1 pairs of dis-
connected vertices in graph G(r). Together with Lemma 5,
graph G(t) is always connected. Lemma 1 shows that
Ho(Ly ® I,,) = M. Hence, all the agents achieve consensus
asymptotically. [ ]

A

V. APPLICATIONS TO OPINION DYNAMICS
AND FORMATION CONTROL

A. Applications to Opinion Dynamics

In this section, we consider the consensus problem of
opinion formation among a group of agents. More specifically,
each agent keeps a real number as its opinion and updates it
by taking a weighted average for the opinions of its neighbors.
Any two agents interact with each other if and only if their
opinion difference is less than a specified bound, which is
called the confidence bound.

For discrete-time opinion dynamics, the following opinion
evolution model is considered:

xi(t+1) =D wij(x)x; ()

jey

(26)

where w;; > 0 denotes the weight between Agents i and j,
and >y wij = 1foranyi € V. Itis clear that the multiagent
system (1) with protocol (6) can be considered as an opinion
formation problem if a(-) satisfies Assumption 2. Since each
agent will consider its own opinion in a positive way, to make
this hold, we assume (n — 1)4 < 1. Then, model (26) can be
rewritten as

xi(t+1) = 1—h2a,~j x,-(t)-}-hZa,-jxj-(t). 27
J# J#
Let
1, 0<s < R?
=1 - 28
«(s) {O, e (28)

then Assumption 2 is satisfied. According to Theorem 3,
the agents achieve the average consensus of opinions
if (12) holds.

In fact, the distribution of the agents’ initial states and the
number of agents are important factors affecting the evolution
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of the network connectivity. In the following, we will present
a more relaxed condition in the circumstance that the initial
opinions are symmetrically distributed.

Consider a system consisting of n agents, Agent i keeps
a real number x; as its opinion. Without loss of generality,
assume that x; < x; if i < j. We say that the states are
symmetrically distributed if there exists a real number x¢, such
that xo = ((x; 4+ x;)/2) for any i 4 j = n. Then, Proposition 2
holds.

Proposition 2: Consider model (27) with n > 4 agents,
suppose that the initial states of the agents are symmetrically
distributed. For any ¢ > 0, if there are less than 2n — 3 pairs
of disconnected agents, then the communication graph G(¢) is
connected.

Proof: See the Appendix. [ ]

Theorem 9: Consider model (27) with n symmetrically dis-
tributed opinions at the initial time and 2 < (1/(a(0)(n — 1))).
Then, the following statements hold.

1) For 2 <n <3, the average consensus of the opinions is
achieved if and only if the initial communication graph
is connected.

2) For n > 4, the average consensus of the opinions is
achieved if there exists an r € [0, R?), such that

W) < (2n — 3)w(R?). (29)

Proof:

1) From the analysis in the proof of Theorem 7, we
know that once the connectivity of the communication
topology is preserved, the system can always reach
consensus. In the following proof, for simplicity, we let
Ne = e(t 4+ 1) — e(t) for any e € R. For n = 2, let x|
and x> be the two agents’ opinions and e = x —x1, then
Ae = Axy — Axy = —2haje(t). Suppose |e(0)| < R.
Note that Ae > 0 if e(r) < 0 and Ae < 0 if e(¢) > 0,
which implies that |e(¢)| is decreasing of ¢. Therefore,
the two agents always keep connected. If ¢(0) > R, then
Ae = 0, and consensus will never be reached. For n = 3,
let x1, x2, and x3 be the three opinions and x| < xp < x3.
From Lemma 10, we have x; = ((x; +x3)/2) and
Axy = 0 for any r > 0. Then, Ax; = aja(xa(t) —
x1(1)+a13(x3(1) —x1 (1)) = (a12+2a13) (x2(t) —x1(2)).
Similarly, we have Ax3 = (a23 + 2a13)(x2(f) — x3(2)).
Let ey = x1 —x7 and e; = x3 —x7, it follows that Ae; =
—(a12 + 2013)e1(t) and Aey = —(a23 + 2a13)ea(?).
If |e;1(0)] < R and |e2(0)| < R, then |e;(z)] and |ez(7)]
are decreasing for any ¢ > 0. That is, the connectivity
of the communication graph is maintained. Suppose the
initial communication graph is not connected. Without
loss of generality, assume |ej(0)] > R, then Ax; = 0,
together with Ax, = 0; one has Ae; = 0, and consensus
cannot be reached.

2) By employing Proposition 2, the proof is similar to the
one of Theorem 3. u

In the continuous-time case, agents (3) with protocol (15)
can be considered as a smoothed model for opinion dynamics
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if the following a(-) is applied:

c, 0<s < (R—¢)?
fGs), (R—e)*<s <R
0, s > R?

a(s) = (30)

where ¢ > 0 is the communication weight between neighbors,
R > 0 is the bound of confidence, f(s) is a nonincreasing
and Lipschitz continuous function of s in [(R — .9)2, R2],
and f((R — ¢)?) = ¢, f(R?) = 0. This smoothed model
makes such an assumption that when the opinion difference
between Agents i and j exceeds the confidence bound, the
information transmission between them vanishes smoothly.
In [17], ¢ is set by a sequence that f(s) closely depends
on, i.e., f(s) = (c/e)(R — 4/s), this model, which is called
an ¢ approximation for the Hegselmann and Krause model.
It is obvious that Theorem 7 can be applied to this model.
Therefore, the average consensus can be reached if the initial
states of agents satisfy (21).

As with Theorem 9, a more relaxed condition for
continuous-time opinion formation model can be obtained if
the initial distribution of the agents’ states is symmetric.

Theorem 10: Consider the multiagent system (3) with pro-
tocol (15), the communication weight a(-) is set by (30).
Suppose there are n symmetrically distributed opinions at the
initial time. Then, the following statements hold.

1) For 2 <n < 3, the average consensus of the opinions is
achieved if and only if the initial communication graph
is connected.

2) For n > 4, the average consensus of the opinions is
achieved if the following inequality holds:

1 llx: (0)—x; (01
>Ry a(s)ds

ieV jeV

R2
< (2n — 3)/ o(s)ds. 3D
0

B. Applications to Formation Control

Now, we apply the main results to stabilizing multiple
continuous-time agents to form a specific geometric shape
in the plane. Suppose that the control input of each agent
is applied as its acceleration [22]. That is, all the agents are
governed by double-integrator dynamics (4).

In the literature, formation control problems are often solved
by either distance-based approaches [2], [3] or displacement-
based approaches [4], [S]. In both cases, the control input of
each agent can be designed as one of the following two forms:

uj = —Vyy —kv;, i€V (32)
Uj :—inl//—}—Za,-j(vj—v,-), ieV (33)
jeY
where v = w(|lx;; %) is a nonnegative and continuously

differentiable potential function. It is easy to see that if

2
we let v = (1/4) Y, oy fo 7" aij(s)ds, (32) and (33)
are equivalent to (16) and (18), respectively. Therefore, the
analysis approaches of consensus can also be used to obtain
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conditions for the stability of formation. The main difference
between consensus and formation is whether the desired
distance between the adjacent agents is zero or a nonzero
constant. Moreover, one can notice that if v = 0 and
a;; (-) satisfies Assumption 3, the multiagent system (4) with
protocol (33) becomes the C-S flocking model [34]. In the
following, we will show that our results corresponding to fixed
network connectivity can be applied to achieving distance-
based formation, while the results corresponding to distance-
dependent network connectivity can be utilized to accomplish
displacement-based formation.

1) Distance-Based Formation: Suppose the communication
weight a;; satisfies Assumption 3. Given a realization x* =
(T, .. xfT)T, the desired formation E* is denoted by
E* = (I — xjll = I} — 2% = dijvi = v;,¥i, j € V).

(lxi—xj 17 ~d)? 5
Let y = (1/4) Zi,jev fo Tajj (\/E-i-dl-j)dS. Then,

protocol (33) can be rewritten as
wi =Y aij(Ilxi — x> —d)(xj —xi) + D aij(w; —vi)
Jjev Jjev
(34)
h S — o 12 = d2 d2) < o 12
where a;j glja(l(”xlj I lj)| + lj) = glja(”xlj ).
As with the analysis approach of Theorem 6, by constructing

the energy-like function V. = 2y + [[v]|?>, we can obtain
that if [;°a(J/s + dizj)ds = oo for any i,j € V, then
lpi — pjll = llx; — x|l is bounded for any i,j € V.

It follows the compactness of {(p”,¢")T|V < V(0)}. This
guarantees that all agents’ states asymptotically converge into
E=1{V =0 ={Vy,y = 0,0, =vj,Vi,j € V). Note
that E* C E and E* # E. From [3], the global stability
of formation E* cannot be guaranteed. However, the local
stability may be obtained if the graph (G, x*) is rigid. The
detailed definition of graph rigidity can be found in [3].
We leave to future work the strict proof of local stability of
the distance-based formation.

2) Displacement-Based Formation: Now, we suppose
that a;; satisfies Assumption 4, which implies that every agent
has a sensing range R > 0. Let /;; be the desired displacement
between Agents i and j. Assume that ||4;;]| < R for any i,
J € V. Note that if this assumption does not hold for some pair
of agents, these two agents will lose the ability to communicate
with each other when the desired displacement between them
is reached, which results in the failure of formation maintain-

e ha2
ing. Let y = (/9% ey fo 77" a5 + s,
where h* = max; jey ||h;jll. Then, protocol (32) can be
written as

u; = —kv; + Za(z)(xj' — Xi + hij)
jev

(35)

where z = (|lx; — x; — hijll + h*)%. Due to the fact that
a(-) is nonincreasing, we have a(z) < a(|lx; — x; %). Hence,
whenever a(z) > 0, it holds that ||x; — x| < /z < R, which
implies that protocol (35) is achievable. Let y; = x; — h; for
i € V, where {hy,...,h,} is a specific set, such that
hi—hj = h;j forany i, j € V. Itis easy to see that y;—y; =0
if and only if x; — x; = h;;. Therefore, the formation control
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5 @
Time

Fig. 3. Trajectories of agents with protocol (6) and & = (2)/(n).

problem is transformed into the consensus problem of the
following system:

Vi = v;
—kvi + >~ a((lyijll + H*))(vj — yi), i €V
Jjev

V;

From Theorem 8, we obtain the following condition for
formation:

1 Iy (0)=y; O]
O+ 3 [T el s

i,jey
(R—h*)?
<1 /0 (5 + h*P)ds

which is equivalent to

1 (i )=} (©)—hij [ +4*)?
O+ 5 > / w(5)ds
i,jey h*

R2
< (n— 1)/2 a(s)ds. (36)
h*

It should be mentioned that if 2™ is close to R, it is difficult
to satisfy condition (36). In fact, it is easy to imagine that the
network connectivity is difficult to be maintained if the desired
distance between the adjacent agents is close to their sensing
range. Hence, the formation is more likely to be achieved
if #* is much less than R.

VI. SIMULATION EXAMPLES

This section presents several simulation examples to validate
the effectiveness of the obtained theoretical results. We first
design three examples to illustrate the case when the connec-
tivity of the communication graph is fixed. Assume that the
communication weight between Agents i and j is the same as
the one of the C-S flocking model [34], which can be written as

H
P
YT+ x = x 128

where H > 0 and f > 0 are system parameters. That is,
a(s) = (H/((1 + 5)#)) and G is a complete graph. Then, both
Assumptions 1 and 3 are satisfied.

Example 1: Consider a group of agents with dynamics (1)
and protocol (6), let n = 30, H = 1, and f = 3.
Due to Theorem 1, if 7 < (1/(n— 1)), consensus can
be asymptotically reached under arbitrary initial states.
Figs. 3 and 4 show the trajectories of the agents with
h = (2/n) and h = (1/n), respectively, under the same

(37
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Fig. 5. Trajectories of agents with protocol (7) when k3 = 0.14.
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Fig. 6. Trajectories of agents with protocol (7) when k3 = 0.3.
initial states. Fig. 4 shows that consensus is reached, therefore
consisting with the result in Theorem 1.

Example 2: Now, we consider a group of agents with
dynamics (2) and protocol (7). Let n = 6, H =1, f = 1,
ki = 1, and k» = 1.5. Then, condition (8) is satisfied. The
initial states of the agents are set by x(0) = (0, 2, 5, 6, 8, 10)7,
v(0) = (1,0, —1,1.5,2, —1)T. When we set k3 = 0.14,
condition (9) is satisfied. By Theorem 2, the agents
achieve consensus asymptotically under arbitrary initial states.
Fig. 5 shows that consensus is reached. When we set k3 = 0.3,
condition (9) is invalid. Fig. 6 shows that consensus is not
reached.

Example 3: Consider a system consisting of six agents
with dynamics (4) and protocol (18). The initial position-like
states and velocity-like states are set the same as the one in
Example 2. Note that

o e e
R A — B 0
o (I+s) Hin(l+ ), B=1.

Therefore, fooo a(s)ds = oo if B < 1. According to
Theorem 6, consensus is asymptotically reached. Otherwise,
Jo~ als)ds < ocoif f > 1.Let H=1and 8 = 2, Fig. 7 shows
that consensus of agents’ states is not reached. When we set
H =1 and f = 1, consensus is asymptotically achieved, as
shown in Fig. 8.

Now, we present two examples to show the effectiveness
of the results when the network connectivity is distance-
dependent. That is, Assumption 2 or 4 is satisfied.
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Fig. 7. Trajectories of agents with dynamics (4) and protocol (18), f = 2.

5
Time Time

Fig. 8. Trajectories of agents with dynamics (4) and protocol (18), f = 1.
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Fig. 9. Discrete-time opinion formation.

Example 4: Consider model (27) with 20 agents.
Their initial opinions are symmetrically distributed,
ie, x(0) = (0.25,1.3,1.5,1.6,1.7,1.8,1.9,2,2.2,3.25)".
Suppose R = 1.5 and a(s) = 1.5 if s < R? and a(s) = 0 if
s > R?, h = (1/(a(0)n)). Let r = 0.02, it is computed that
W(0) = 56.97 < (2n — 3)w(R?) = 57.12. From Theorem 9,
consensus can be asymptotically reached, as shown in Fig. 9.

Example 5: Consider an example of the smoothed opin-
ion formation model, in which a(-) is set in form (30).
Then, Assumption 4 is satisfied. Assume the opinions are
set symmetrically distributed at the initial time, i.e., x(0) =
(1,1.7,1.85,1.9,1.95,2.05,2.1,2.15,2.3,3)". Let R = 1,
& = 0.01, and ¢ = 1, which implies that fz(s) = 100(1 — /5).
Note that Vi = 16.76 < (2n — 3) fOR a(s)ds = 16.83,
where Vi is in form (22). By Theorem 10, the average
consensus problem is solved. Fig. 10 shows the trajectories of
the opinions and Vj. In this example, the condition presented
in [18] is obviously invalid, since there exist two agents
sharing no common neighbors.

The following two examples are for illustrating the effec-
tiveness of our protocols for the formation control in networks
with fixed connectivity and distance-dependent connectivity,
respectively. We will consider six agents with dynamics (4)
moving in the plane. The desired formation is a regular
hexagon with the side of length 1.

Example 6: Consider the case when the network connectiv-
ity is fixed, we assume that the communication weight g;; is in
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Fig. 10. Continuous-time opinion formation.
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Fig. 11.  Six agents with protocol (34) converging to a regular hexagon.
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Fig. 12.  Six agents with protocol (35) converging to a regular hexagon.

form (37) and (G, x*) is complete. It is easy to see that if
H > 0, p <2, it holds that

/Oooa(\/g—f-dl-zj)ds:/ooo(#ds:oo

2 B
Vs +di 1)

Since a complete graph is globally rigid, the formation can
be locally asymptotically achieved. By setting H = 1 and
S =2, Fig. 11 shows the trajectories of six double-integrator
agents implementing protocol (34). In Fig. 11, the red points
represent the initial position states of the agents and the blue
points represent the current position states of them. It can be
seen that at the steady state, all the agents achieve a common
velocity state and their position states form a regular hexagon
with the side of length 1.

Example 7: Consider the case when the network connec-
tivity is distance-dependent, protocol (35) is used. We assume
that a(-) is in form (30), where f(s) = S(R — \/s), ¢ = 1,
and ¢ = 0.1. Let the sensing range of each agent be R = 6.
By choosing proper initial states satisfying condition (36),
Fig. 12 shows that protocol (35) successfully solves the
formation problem.

VII. CONCLUSION

This paper solved the consensus problem of multiagent
systems in two types of distance-dependent communication
networks. In the first type of networks, the connectivity is fixed
while the transmission volume is distance-dependent. It was
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found that by applying the proposed protocols to discrete-time
multiagent systems, agents achieve consensus if the control
gains satisfy some specified conditions. For the continuous-
time case, the protocols can be globally effective if the decay
rate of the communication weight is less than a given bound.
In the second type of networks, the motion of agents influ-
ences the network connectivity and the transmission volume,
simultaneously. We obtained that for both discrete-time and
continuous-time multiagent systems, the connectivity of the
communication network can be maintained if the agents stay
close enough to each other at the initial time. As a result,
consensus can be achieved asymptotically. The main results
were subsequently applied to solving the consensus problem of
opinion dynamics and the formation control problem. Finally,
the numerical simulations were performed to validate the
effectiveness of the obtained theoretical results.

The future work will focus on some other interesting
topics with distance-dependent communications in distributed
coordination of multiagent systems, such as the containment
problem, the tracking problem, the case with directed commu-
nication topology, and the time delay.

APPENDIX
PROOFS OF LEMMAS AND PROPOSITIONS

The proof of Lemma 4 is based on Lemmas 8 and 9.

Lemma 8 (Menger’s Theorem [39]): If x and y are vertices
of a graph G and (x, y) ¢ £(G), then the minimum size of an
X, y—cut equals the maximum number of pairwise internally
disjoint x, y—paths.

Lemma 9 [39]: Deletion of an edge reduces connectivity
by at most 1.

Proof of Lemma 4: Assume that there exist a pair of agents
i and j, and the maximum number of disjoint paths between
them is [ < k*. We first consider the case when (i, j) ¢
£(G), from Lemma 8, the minimum size of an i, j—cut in
graph G is [. This means that the minimum size of a vertex
set disconnecting i and j is [. Therefore, x(G) < [ < k¥,
which is a contradiction. For the case when (i, j) € £(G).
Let ¢ =G — {(i, j)}, from Lemma 9, x(G') > x(G) — 1. By
Menger’s theorem, the minimum size of an i, j—cut in graph
G is 1 — 1. Hence, k(G') <1 — 1. Then, x(G) < x(G") +1 <
[ < k*, which conflicts with x(G) = k*. [ |

Proof of Lemma 5: We prove the contrapositive of the
statement. Without loss of generality, suppose that G has r
connected components, Vy, ..., V), are the corresponding sets
of vertices, and [V1| < --- < [V;|. Let V), be the first set which
has more than one element. That is, p = min)y,|>2i. Let f(r)
denote the minimal number of pairs of disconnected vertices,
ni = [Vil. We have f(r) = C; —C; —Cy . —---—Cy.
Combining V,, and V41, it follows that f(r — 1) < C,% —

2 —C? —---—C,zlr.Thus

C”P""”pH Np+2

fO)=fr=10)=CF 4. —Ci —Cp >0

np+1
Consequently, f(r) is an increasing function of r. Since the
graph is not connected, one has r > 1. Thus, f(r) > f(2).
Recall that f(2) = min{nno} = min{n;(n — n;)} = n — 1.
Therefore, f(r) > n — 1. ]
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Proof of Lemma 6: If || p(¢)| is upper bounded, we obtain
the upper bound B of |x; — x;|| for any i,j € V from
Lemma 3. Let e denote the eigenvector associated with 1, (L;),
due to the fact that a(s) is nonincreasing of s, we have

) TLie  Yiey Xjey sijtijllei — eIl
2(Lo) = eTe 2eTe
2
> a(B)- 2icv 2 jev gijllei — ¢l
- . 2eTe
e’ Le -
= a(B)- =2 > a(B)ia(L)

ele

where L is the Laplacian matrix of graph G = (V, £, G). Since
graph G is connected, 2(L) > 0. Thus, 12(L;) has a positive
lower bound. u
Proof of Lemma 7: By Assumption 2, a;; > a* > 0 if
(i, j) € &. For a fixed time ¢ > 0, through a similar process
to the proof of Lemma 6, we have 1,(L;) > a*12(L,), where
L, is the Laplacian matrix of graph G () = (V, £, G(r)). Note
that G(¢) is an adjacency matrix with elements O and 1. Since
graph G(t) is connected for any ¢ > 0, the number of possible
G(1) is finite. Moreover, for each possible G(r), A2(L;) > 0.
It follows that /lz(Z,) > A* for some A* > 0. Therefore,
Ao(Ly) = a*A* > 0.
Proof of Proposition 1:
1) The sufficiency is obvious, we only prove the necessity.
Suppose W = 0, then for any (i, j) € &, w(||lx;; 01> =
Wi; = 0, implying that |lx; — x;|| = 0. For any
i, j €V, since graph G has a spanning tree, it follows
that [lx; — x| < Z(ik,ik+1)eP lxi, — xip, | = 0, where
P ={(,i1), (i1,i2), ..., (is, j)} is the path from i to j.
Hence, x; = x;.
2) Suppose that 0 < z; < z2. We study this problem in the
following three cases.
Case 1: z1 < zo < r. Then, w(z2) — w(z1) = a(r)
(z2—21) 2 0.
Case 2: z1 <r < zp. It follows that w(z2) — w(z1) >
a(r)yr —a(r)z; = 0.
Case 3: r <z1 <zp.If [z2/r] > |z1/7], then

w(z2) — w(z1)

> (_+)+(
S(RUICEH?

If |zo/r] = lz1/7r], we have zo — |z2/r]r >
z1 — |zi1/r]r. Hence, w(z2) — w(z;) =
a([z2/r1r)(z2 — lz2/r]r) —a([z1/r1r)(z1 —
lz1/r]r) = 0.

3) For any 7 > 0, note that a;; (x(r + 1)) < a;;(x(r)) if
lxij (t + DIl = llxi; @]l and a;; (x (2 + 1)) > a5 (x (1)) if
llxij (¢ + 1) < llxij(#)|l. Therefore, we always have

Wij t+1)— Wij ®)
< aij () (lxij (¢ + DI = [lxij (O1I).
Then, (5) can be obtained.

IV

~
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4) For any r < z < 00, a(-) is Riemann integral on [0, z],
since it is monotonous and bounded by «(0). Then, we
have

/Za(s)ds
0
r LE]r
:/ a(s)ds+---+/ a(s)ds
0 (LE1=Dr
+ o(s)ds
/LiJr
r Lelr z
ds + - - z d
2/0 a(ryds + —i—/(ml)ra(bJ ) s
‘ z
“fo(Fh)e
L£]
= Z;‘a(sr) —}—a(’rg—‘r) (z - L;Jr) = w(z).

Furthermore

w(z) — /Z a(s)ds
Z)

S D-L2H

s=1

LE1r z
—/ a(s)ds—/ o(s)ds
r LE]r
Z
=o)L o
r r r L%Jr
(EPEL)=e
r r

Since lim,_.o [ a(s)ds = [ a(s)ds, together with

squeeze theorem, it follows that lim,_ow(z) =

fé a(s)ds for z > 0.

5) Under Assumption 2, we have W(r) =
(1/2) > ey Zjev w(||x;j (0)?>) for the given 7.
Suppose that graph G(¢) is disconnected, from Lemma 5,
there exist at least n — 1 pairs of disconnected vertices
in G(r). Let & be the set such that (i, j) € & if and
only if |lx;(t) — x;(t)|| > R. Since w(z) > 0, we have
W) = (1/2) X jes wllxij @17 = (2 = Dw(R?).

This conflicts with our assumption that W(t) <
(n — 1)w(R?). Therefore, graph G(¢) is connected. M

v

The proof of Proposition 2 is based on Lemma 10.

Lemma 10: If the initial states are symmetrically distrib-
uted, the states of all agents in model (27) will be symmetri-
cally distributed for any ¢ > 0.

Proof: Suppose that all the opinions are symmetrically
distributed at time # > 0. For any i + j = n+ 1, the symmetric
distribution implies that x; (t) +x; () = x1(t) + x,(¢), and the
neighbors of i and j are also symmetrically distributed. That
is, for any k € N;(t), there exists a unique / € N (¢), such that
k 41 = n + 1. Moreover, since x;(t) + x;(t) = xi(t) + x;(t),
one has x; (1) — xx(t) = x;(t) — x;(¢), implying that a;x = a ;.
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Therefore
xit+1) +Xj(t + 1)) — (xi(®) +Xj(l‘))
=h > @ —xi@)+h D ajplu) —x;@)

keN; (1) 1eN; (1)
=h Z oixkxr(t) +h Z ajlxl(t)
keN; (1) leN(t)
—h D auxi()—h D> ayxj(t)=0
keN; (1) leN(t)
implying that M = {x | x;(t) +x;(t) = x1(t) +x,(1), i+j =
n + 1} is a positively invariant set. [ |

Proof of Proposition 2: Suppose graph G(¢) has r (r > 1)
connected components with Vi, ..., V, as their vertex sets,
and |V;| = n; for i € {l,...,r}. Since the agents’ states
are always symmetrically distributed, we let ny = n; for any
k+ j=1+4r. Let g(r) be the number of pairs of connected
vertices. Then, g(r) =3, . Ca.

Consider first the case when n is odd. From the symmetry,
we have 1 <n; < ((n—1)/2).

Ifn1:1
2
2 2 n“—5+6
8 =Cy 1 = Cigy, =Chp=————
If ng = (m—1/2), g¢) = C2 + C} =

((n> —4n +3)/4).
If1 <ny < ((n—1)/2)

gr) < Cr +Cry, +Cr

2 nz—n
= 3n] — 2nn +
n* —8n 427
P ——
- 4

For the case when n is even, from the symmetry, we have
1 <ny <(n/2).
Ifn =1

n?—5n+6
> .

If ny = (n/2), g(r) = C2, + C2 = (n* — 2n)/4).
If 1 <n < (n/2),g(r) <C2 +C, _, +C} =3n]—
2nny + ((n* —n)/2) < ((n* — 6n + 12)/4).
In conclusion, we can obtain that g(r) < ((n> — 51 + 6)/2)
for n > 4. Therefore, the minimal number of pairs of
disconnected agents is f(r) = C,zZ — g(r) = 2n — 3. This
conflicts with the condition that f(r) < 2n — 3. Hence,
graph G(¢) is always connected. [ ]

—= ~n—ny—n, n

glr) < C%WI n < C? =C2,=
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