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Distributed algorithms for solving a class of

convex feasibility problems

Kaihong Lu, Gangshan Jing, and Long Wang

Abstract

In this paper, a class of convex feasibility problems (CFPs)are studied for multi-agent systems

through local interactions. The objective is to search a feasible solution to the convex inequalities with

some set constraints in a distributed manner. The distributed control algorithms, involving subgradient

and projection, are proposed for both continuous- and discrete-time systems, respectively. Conditions

associated with connectivity of the directed communication graph are given to ensure convergence of the

algorithms. It is shown that under mild conditions, the states of all agents reach consensus asymptotically

and the consensus state is located in the solution set of the CFP. Simulation examples are presented to

demonstrate the effectiveness of the theoretical results.

Index Terms

Multi-agent systems; Consensus; Convex inequalities; Subgradient; Projection.

I. INTRODUCTION

Distributed coordination control of multi-agent systems (MASs) has been intensively inves-

tigated in various areas including engineering, natural science, and social science [1]-[3]. As a

fundamental coordination problem, the consensus which requires that a group of autonomous

agents achieve a common state has attracted much attention,see [4]-[11]. This is due to its
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wide applications in distributed control and estimation [12], distributed optimization [13]-[15]

and distributed methods for solving linear equations [16],[17].

Researches on consensus can be roughly categorized depending on whether the agents have

continuous- or discrete- time dynamics. Noticeable works focusing on the multi-agent systems

include [6], [9], [18], [19] for the continuous-time case and [5], [19]-[21] for the discrete-time

case. In the aforementioned works, the agents interact witheach other through a network and

each agent adjusts its own state by using only local information from its neighbors. Within this

framework, connectivity of the communication graph plays akey role in achieving consensus,

and consequently several conditions of the connectivity have been established. For example,

the communication graph must have a spanning tree when the topology is fixed [6], while the

union of the communication graphs should have a spanning tree frequently enough as the system

evolves when the topology is switching [9], [21]. In addition, infinitely-joint connectedness, i.e.,

the infinitely occurring communication graphs are jointly connected, is necessary to make the

agents reach consensus when the topology is time-varying [18], [19].

In recent years, the constrained consensus problem that seeks to reach state agreement in the

intersection of a number of convex sets has been widely investigated. In [22], a projection-based

consensus algorithm was proposed when the communication graph is balanced. This algorithm

with time delays was studied in [24], where the union of the communication graphs within a

period was assumed to be strongly connected. The problem wasextended to the continuous-time

case in [25], where each set serves as an optimal solution setof a local objective function,

and the global optimal solution is achieved as long as the intersection of the constrained sets is

computed. By taking the advantages of the property that the solution set of linear equations is an

affine set, the projection-based consensus algorithm in [25] was successfully applied to solving

linear equations in [26], where the projection operator in [25] was replaced with a special affine

projection operator. Unlike the distributed algorithm forsolving linear equations in [16], the

projection-based consensus algorithm in [26] does not needto restrict each agent’s initial state

within the solution set of its corresponding equations. Themethods in [22]-[26] are useful for

the computation of the intersection when the projections onto the local sets are easily calculated.

However, in general, the application of the projected method usually requires the solution of an

auxiliary minimization problem associated with the projection onto the local set at each time.

This might lead to a limitation on its applications.
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Comparing with computing the intersection and solving linear equations, a more general

problem is solving CFPs, which usually needs to solve linearequations and convex inequalities

simultaneously, and ensure the solution to be in the intersection of some simple convex sets.

Applications of solving CFPs arise in different fields, suchas pattern recognition [27], signal

processing [28] and image restoration [29], [30]. It is alsowell known that some convex

programming problems can be transformed into an equivalentCFP through the Karush-Kuhn-

Tucker condition [31]. For example, the linear program problem in [32] can be transformed into

a set of linear equations and inequalities. Inspired by the distributed methods for solving linear

equations [16], [26], distribute methods for CFPs will be studied in this paper. Different from

linear equations, the solution set of a CFP is usually not a simple affine set due to the existence

of inequalities which can even be nonlinear, thus it is necessary to develop alternative methods

for solving this problem.

In this paper, distributed algorithms, involving subgradient and projection, are proposed for

multi-agent systems to solve the CFP involving convex inequalities. Here the distributed control

algorithms are designed for the continuous- and the discrete-time systems, respectively. Our aim

is to obtain the graphic criteria for the convergence of these algorithms. One of the challenge

is that, the subgradient and projection operations lead to nonlinearity of the algorithms. To deal

with this problem, the control inputs are decomposed into a linear part involving the traditional

consensus term and a nonlinear part involving the subgradient and projection operations. The

linear part is analyzed by using the graph theory and some basic theories of stability associated

with linear systems, while the nonlinear part is done by Lyapunov theory. The contributions of

this paper are summarized as follows:

(1) Both continuous- and discrete-time distributed algorithms are provided for solving CFPs.

Different from the distributed algorithms for solving linear equations in [16], [17], in which the

algorithms need to restrict each agent’s initial state within the solution set of its corresponding

equations, the CFPs can be solved by the presented algorithms under arbitrary initial states.

(2) The continuous-time distributed gradient-based algorithm has also been investigated in [36],

where convergence of the algorithm relies on a time-varyingparameter. Our algorithm does not

involve a time-varying parameter and it does not require theassumption on boundedness of the

subgradient as in [36]. We prove that, if the directed graph is fixed and strongly connected, all

agents’ states will reach a common point asymptotically andthe point is located in the solution
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set of the CFP. Moreover, we find that the CFP can be solved if the δ−graph associated with a

time-varying graph is strongly connected.

(3) Discrete-time distributed subgradient-based algorithms have been studied in [22], where the

communication graph is balanced. Unlike [22], [23], in our algorithm, only relative information

between the agents is required and the convergence can also be ensured when the communication

graph is unbalanced. We prove that the effectiveness of the presented algorithm can be guaranteed

when the directed graph is strongly connected.

This paper is organized as follows. In Section II, we presentsome notions in graph theory and

state the problem studied in this paper. In Section III, centralized algorithms in both continuous-

and discrete-time cases for the CFP are focused on and the convergence of them is analyzed. In

Section IV, the distributed control algorithm in continuous-time case is presented for the MAS to

solve the CFP, and the convergence is analyzed under both fixed and time-varying communication

graphs. The discrete-time case is studied in Section V. In Section VI, a distributed gradient-based

algorithm is designed for a CFP involving linear inequalities. Simulation examples are presented

in Section VII. Section VIII concludes the whole paper.

Notation: Throughout this paper, we use|a| to represent the absolute value of scalara. R

andC denote the set of real number and the set of complex number,respectively. LetRm be

them-dimensional real vector space andCm be the complex one. For a given vectorx ∈ Rm,

x > 0(≥ 0) implies that each entry of vectorx is greater than (not less than) zero.‖x‖ denotes

the standard Euclidean norm, i.e.,‖x‖ =
√
xTx. For a functiong(·) : Rm → R, we denote its

plus function byg+(·) = max[g(·), 0]. 1n denotes then-dimensional vector with elements being

all ones.In denotes then × n identity matrix. The transposes of matrixA and vectorx are

denoted asAT andxT , respectively. For any two vectorsu andv, the operator〈u, v〉 denotes the

inner product ofu andv. For matricesA andB, the Kronecker product is denoted byA⊗B.

II. PRELIMINARY AND PROBLEM FORMULATION

A. Graph theory

The communication topology is denoted byG(A(t)) = (V, E(t),A(t)), V is a set of vertices,

E(t) ⊂ V × V is an edge set, and the weighted matrixA(t) = (aij(t))n×n is a non-negative

matrix for adjacency weights of edges. If nodei can receive the information from nodej, then

nodej is called as nodei’s neighbor and it is denoted by(j, i) ∈ E(t) andaij(t) > 0. Otherwise,
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aij(t) = 0. DenoteNi(t) = {j ∈ V|(j, i) ∈ E(t)} to represent the neighbor set of nodei at time

t. The Laplacian matrix of the graph is defined asL(t) = (lij(t))n×n, wherelij(t) = −aij(t) if

i 6= j and lij(t) =
n
∑

j=1

aij(t) if i = j for any i = 1, · · · , n. For a fixed and directed graphG(A),

a path of lengthr from nodei1 to nodeir+1 is a sequence ofr + 1 distinct nodesi1 · · · , ir+1

such that(iq, iq+1) ∈ E for q = 1, · · · , r. If there exists a path between any two nodes inV,

thenG(A) is said to be strongly connected. A directed graph, where every node has exactly one

neighbor except the root, is said to be a directed tree. A spanning tree of a directed graph is a

directed tree formed by graph edges that connect all the nodes of the graph [33]. We say that a

graph has a spanning tree if a subset of the edges forms a spanning tree.

For a time-varying and directed graphG(A(t)), (j, i) is called aδ−edge if there always exist

two positive constantsT andδ such that
∫ t+T

t
aij(s)ds ≥ δ for any t ≥ 0. A δ−graph, induced

by G(A(t)), is defined asG(δ,T ) = (V, E(δ,T )), whereE(δ,T ) =
{

(j, i) ∈ V × V|
∫ t+T

t
aij(s)ds ≥

δ for any t ≥ 0
}

. The communication graphG(A(t)) is said to be balanced if the sum of the

interaction weights from and to an agenti are equal, i.e.,
n
∑

j=1

aij(t) =
n
∑

j=1

aji(t).

Lemma 1: [5] For a fixed graphG(A), if G(A) has a spanning tree, then the Laplacian matrix

L has one simple 0 eigenvalue and the other eigenvalues have positive real parts.

Lemma 2: [6] For a fixed graphG(A), if G(A) is strongly connected, then there exists a

vectorw = [w1 · · ·wn]T > 0 such thatwTL = 0.

For ease of description, ifG(A) has a spanning tree, we useλ1(L) to represent the 0 eigenvalue

andλi(L), i = 2, · · · , n to represent other non-zero eigenvalues.

B. Convex analysis

A function f(·) : Rm → R is convex if it holdsf(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y) for

anyx 6= y ∈ Rm and0 < γ < 1. For convex functionf(x), if 〈 ∇f(x), y − x 〉 ≤ f(y)−f(x)
holds for anyy ∈ Rm, then∇f(x) is a subgradient of functionf at pointx ∈ Rm. There must

exist subgradients for any convex function. Furthermore, if the convex function is differentiable,

its gradient is the unique subgradient.

Given a setΩ ⊂ R
m, it is called as a convex set ifγx+(1−γ)y ∈ Ω for any scalar0 < γ < 1

andx, y ∈ Ω. For a closed convex setΩ, let ‖x‖Ω
∆
= infy∈Ω ‖x− y‖ denote the standard Euclidean

distance of vectorx ∈ Rm from Ω. Then, there is a unique elementPΩ(x) ∈ Ω such that

July 3, 2021 DRAFT



6

‖x− PΩ(x)‖ = ‖x‖Ω, wherePΩ(·) is called the projection onto the setΩ [34]. Moreover,PΩ(·)
has the non-expansiveness property:‖PΩ(x)− PΩ(y)‖ ≤ ‖x− y‖ for any x, y ∈ Rm.

Lemma 3:For a convex functiong(·) : Rm → R, suppose the setX = {x ∈ Rm|g+(x) = 0}
is non-empty, it holdsz ∈ X if and only if 0 is a subgradient of the plus functiong+ at pointz.

Proof: Sufficiency. By the definition ofg+(·), we know functiong+(·) is convex. Therefore,

the subgradient of functiong+(·) always exists. If 0 is a subgradient of the plus functiong+ at

point z, by the definition of the subgradient, we haveg+(y)− g+(z) ≥ 0T (y − z) = 0 for any

y ∈ Rm. Let y ∈ X, then we have−g+(z) ≥ 0. By this and the fact thatg+(z) ≥ 0, it can be

concluded thatg+(z) = 0.

Necessity. If z ∈ X, we haveg+(z) = 0. Due to the fact thatg+(y) ≥ 0, we haveg+(y)−0 ≥
0T (y − z) for any y ∈ Rm. Thus, 0 is a subgradient of the plus functiong+ at pointz.

Lemma 4: [22] Given a closed convex setΩ ⊂ Rm, it holds

〈PΩ(x)− x, x− y〉 ≤ −‖x‖2Ω

for any x ∈ R
m, y ∈ Ω.

C. Problem formulation

Consider a MAS consisting ofn agents, labeled by setV = {1, · · · , n}. Here we consider

agents with both continuous-time dynamics

ẋi(t) = ui(t), i ∈ V (1)

and discrete-time dynamics

xi(t + 1) = xi(t) + ui(t), i ∈ V (2)

wherexi(t) ∈ Rm andui(t) ∈ Rm are respectively, the state and input of agenti. The objectives

of this paper are to designui(t) for (1) and (2) by using only local information to solve the

following CFP:






gi(x) ≤ 0

x ∈ X :
∆
=∩ni=1Xi

i = 1, · · · , n (3)

where x ∈ R
m, gi(·) : Rm → R is a convex function, it is continuous on(−∞,∞). Each

Xi is a closed convex set. Agenti can only have access to the information associated with
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subgradient∇g+i (·) and projectionPXi
(·). We assume each∇g+i (·) is piecewise continuous for

any i = 1, · · · , n.

Remark 1:Note that if and only ifx ∈ Xi, it holds x = PXi
(x). If x = PXi

(x) for all

i = 1, · · · , n, thenx belongs to their intersection. Since the algorithms in the following sections

refer to the projection operatorPXi
(·), here we only consider some convex setsXi onto which

the projectionPXi
(x) can be easily calculated or their expressions could be givenin detail at any

pointx. For example, if setX represents the solution set of linear equationaTx−b = 0, i.e.,X =

{x|aTx− b = 0}, wherea, x ∈ Rm, b ∈ R, it is easy to show thatPX(x) =
(

I − aaT

‖a‖2

)

x+ ba
‖a‖2

is a projection ofx onto setX. Consequently, it is not difficult to find that the algorithmsin the

following sections are also available to the CFP involving linear equations.

The solution set of CFP (3) is denoted byX∗ and the following assumption is adopted throughout

the paper.

Assumption 1:X∗ is non-empty.

Note that a vectorx∗ belongs toX∗, if and only if it holds thatx∗ ∈ X and g+i (x
∗) = 0 for

eachi ∈ {1, · · · , n}.

III. CENTRALIZED ALGORITHMS FOR CFPS

In this section, we focus on the following CFP






g(x) ≤ 0

x ∈ X

(4)

wherex ∈ Rm, g(·) : Rm → R is a convex function, andX is a closed convex set.

A. Continuous-time case

To solve CFP (4), the following continuous-time subgradient and projection-based algorithm

is proposed.

ẋ(t) = −α(t)[x(t)− PX(x(t))]− β(t)∇g+(x(t)) (5)

whereα(t),β(t) ∈ R.

Theorem 1:Suppose CFP (4) has a non-empty solution setX∗, if α(t) ≥ 0 and β(t) ≥ 0

satisfy that
∫∞
0
α(t) → ∞ and

∫∞
0
β(t) → ∞, thenx(t) in (5) converges to a vectorx∗ in set

X∗.
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Proof: Define a positive-definite Lyapunov function candidateV (t) = 1
2
‖x(t)−x0‖2, where

x0 ∈ X∗. By the definition ofg+, it holds g+(x0) = ‖x0‖X = 0. Based on the property of the

subgradient, we have〈x(t)− x0,∇g+(x(t))〉 ≥ g+(x(t)). Taking the derivative of functionV (t)

with respect tot yields

V̇ (t) = 〈x(t)− x0, ẋ(t)〉

=
〈

x(t)− x0,−α(t)[x(t)− PX(x(t))]− β(t)∇g+(x(t))
〉

= −α(t) 〈x(t)− x0, x(t)− PX(x(t))〉 − β(t)〈x(t)− x0,∇g+(x(t))〉

≤ −α(t) 〈x(t)− x0, x(t)− PX(x(t))〉 − β(t)g+(x(t)).

(6)

By Lemma 4, we know−〈x(t)− x0, x(t)− PX(x(t))〉 ≤ −‖x(t)‖2X ≤ 0. Note thatg+(x(t)) ≥
0. Thus,V̇ (t) ≤ 0. Moreover,V (t) is bounded by zero, it can be concluded thatV (t) converges

andV (∞) exists, which implies‖x(t)− x0‖ converges. By inequality (6), we have
∫ ∞

0

α(t) ‖x(t)‖2Xdt +
∫ ∞

0

β(t)g+(x(t))dt ≤ V (0)− V (∞) <∞.

Since α(t) ‖x(t)‖2X and β(t)g+(x(t)) are both non-negative, then we have
∫∞
0
α(t) ‖x(t)‖2X

dt < ∞ and
∫∞
0
β(t)g+(x(t))dt < ∞. These and the facts

∫∞
0
α(t) → ∞ and

∫∞
0
β(t) → ∞

imply lim
t→∞

inf ‖x(t)− PX(x(t))‖ = lim
t→∞

inf g+(x(t)) = 0. Thus, there exists a subsequence

{x(tk)} of x(t) such that lim
k→∞

x(tk) = lim
t→∞

inf x(t) = x∗, wherex∗ is a point in the solution set

of CFP (4). Moreover, note thatV (x(t)) converges, it can be concluded thatlim
t→∞

x(t) = x∗ ∈ X.

Hence, the validity of the result is verified.

Corollary 1: Suppose CFP (4) has a non-empty solution setX∗, if x(t) adjusts its value with

the following dynamics

ẋ(t) = −[x(t) − PX(x(t))]−∇g+(x(t))

thenx(t) converges to a vectorx∗ in setX∗.

B. Discrete-time case

Now we present the discrete-time algorithm for CFP (4).


















ξ(t) = x(t)− β(t)∇g+ (x(t))

ϕ(t) = α(t) (ξ(t)− PX(ξ(t)))

x(t+ 1) = ξ(t)− ϕ(t)

(7)
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wherePX(·) and∇g+(x(t)) are defined as those in (5).

Assumption 2:∇g+(x(t)) ≤ K for someK ≥ 0.

Lemma 5: [35] Let {z(t)} be a non-negative scalar sequence such that

z(t + 1) ≤ (1 + a(t))z(t) − b(t) + c(t)

for all t ≥ 0, if a(t) ≥ 0, b(t) ≥ 0, c(t) ≥ 0 with
∞
∑

t=0

a(t) < ∞ and
∞
∑

t=0

c(t) < ∞, then the

sequence{z(t)} converges to some constantz∗ and
∞
∑

t=0

b(t) <∞.

Theorem 2:Under Assumptions 2, if CFP (4) has a non-empty solution setX∗, andα(t) ,

β(t) satisfy

(a) α(t) ∈ [0, 1],
∞
∑

t=0

α(t) → ∞ and
∞
∑

t=0

α2(t) <∞;

(b) 0 ≤ β(t) ≤ ∞,
∞
∑

t=0

β(t) → ∞ and
∞
∑

t=0

β2(t) <∞.

Then,x(t) in (7) converges to a vectorx∗ in setX∗.

Proof: We choose the Lyapunov function candidate asV (t) = ‖x(t)−x0‖2, wherex0 ∈ X∗.

Taking the difference of functionV (t) along with (7) yields

∆V (t) = V (t+ 1)− V (t)

= ‖ξ(t)− ϕ(t)− x0‖2 − ‖x(t)− x0‖2

= ‖(1− α(t))(ξ(t)− x0) + α(t)(PX(ξ(t))− x0)‖2 − ‖x(t)− x0‖2

≤
(

(1− α(t))‖ξ(t)− x0‖+ α(t)‖PX(ξ(t))− x0‖
)2

− ‖x(t)− x0‖2

≤ ‖ξ(t)− x0‖2 − ‖x(t)− x0‖2

(8)

where the last inequality follows from the non-expansiveness property of projection operator,

i.e., ‖PX(ξ(t))− x0)‖ ≤ ‖ξ(t)− x0‖. Moreover, we have

‖ξ(t)− x0‖2 ≤ ‖x(t)− x0‖2 − 2β(t)〈∇g+(x(t)), x(t)− x0〉

+ β2(t)K

≤ ‖x(t)− x0‖2 − 2β(t)
(

g+(x(t))− g+(x0)
)

+ β2(t)K.

(9)

From inequalities(8) and (9), we have∆V (t) ≤ β2(t)K. Thus, it holds thatV (t) ≤ V (0) +
t−1
∑

t=0

β2(t)K ≤ V (0) +
∞
∑

t=0

β2(t)K < ∞. By the definition ofV (t), it can be concluded that

x(t) is bounded. Since‖β(t)∇g+ (x(t)) ‖ < ∞, ξ(t) is bounded. This and the continuity of
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PX(ξ(t)) imply ‖ξ(t)− PX(ξ(t))‖ < ∞. Denote∇(t) = β(t)∇g+ (x(t)), since
∞
∑

t=0

α2(t) < ∞

and
∞
∑

t=0

β2(t) <∞, it can be concluded that
∞
∑

t=0

‖∇(t)‖2 <∞ and
∞
∑

t=0

‖ϕ(t)‖2 < ∞. Similar to

(8), we also have

∆V (t) = V (t+ 1)− V (t)

= −2〈∇(t) + ϕ(t), x(t)− x0〉+ ‖∇(t) + ϕ(t)‖2

= −2〈∇(t), x(t)− x0〉 − 2〈ϕ(t), ξ(t)− x0〉

− 2〈ϕ(t),∇(t)〉+ ‖∇(t) + ϕ(t)‖2

= −2〈∇(t), x(t)− x0〉 − 2〈ϕ(t), ξ(t)− x0〉+ ‖∇(t)‖2 + ‖ϕ(t)‖2

≤ −2β(t)g+(x(t))− 2α(t)‖ξ(t)‖2X + ‖∇(t)‖2 + ‖ϕ(t)‖2

= −2β(t)g+(x(t))− 2α(t)‖ξ(t)‖2X + ‖∇(t)‖2 + ‖ϕ(t)‖2.

(10)

Recall the fact that
∞
∑

t=0

‖∇(t)‖2 + ‖ϕ(t)‖2 < ∞ and −2β(t)g+(x(t)) − 2α(t)‖ξ(t)‖2X < 0,

by Lemma 5, it can be concluded‖x(t) − x0‖ converges and it holds
∞
∑

t=0

(

β(t)g+(x(t)) +

α(t)‖ξ(t)‖2X
)

< ∞. Sinceβ(t)g+(x(t)) > 0 and α(t)‖ξ(t)‖2X > 0 for all t > 0, we have
∞
∑

t=0

β(t)g+(x(t)) <∞ and
∞
∑

t=0

α(t)‖ξ(t)‖2X <∞. By the facts
∞
∑

t=0

α(t) → ∞ and
∞
∑

t=0

β(t) → ∞,

we have lim
t→∞

inf ‖ξ(t)− PX(ξ(t))‖ = lim
t→∞

inf g+(x(t)) = 0. Thus, there exists a subsequence

{x(tk)} of x(t) such that lim
k→∞

x(tk) = x∗, wherex∗ is a vector such thatg+(x∗) = 0. By the

fact ‖x(t)−x0‖ converges, we can concludelim
t→∞

x(t) = x∗. Furthermore, note that∇(t) → 0 as

t → ∞, thus lim
t→∞

inf ‖ξ(t)− PX(ξ(t))‖ = 0 and lim
t→∞

x(t) = x∗ imply lim
t→∞

‖x∗ − PX(x
∗)‖ = 0.

Therefore,x∗ is a solution to CFP (4), i.e.,x∗ ∈ X∗.

IV. CONTINUOUS-TIME DISTRIBUTED CONTROL ALGORITHMS FOR SOLVINGCFPS

In this section, we focus on solving CFP (3) for continuous-time MAS (1) in a distributed

manner, which means that each agent has access to only its ownstate and that from its neighbors.

The following input is proposed.














ui(t) =
∑

i∈Ni(t)

aij(t)(xj(t)− xi(t)) + φi(t)

φi(t) = −τ
(

[xi(t)− PXi
(xi(t))] +∇g+i (xi(t))

)

i ∈ V (11)
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where τ is a positive coefficient. Note thatφi depends on only agenti’s own state, so (11)

is distributed. Based on Lemma 3 in Section II, here we set∇g+i (x) = 0 if gi(x) ≤ 0 and

∇g+i (x) = ∇gi(x) otherwise.

Remark 2: If we set τ = 0 in algorithm (11), then it will become a typical linear consensus

algorithm for MASs studied in [5], [6]. In this case, MASs reach consensus asymptotically

if the communication graph is fixed and has a spanning tree. The distributed subgradient-

based algorithm was studied for continuous-time multi-agent systems to optimize a sum of

convex objective functions in [36], but the convergence of the algorithm relies on a time-varying

parameter and the projection term was not involved.

Let x(t) =
[

xT1 (t), · · · , xTn (t)
]T

andφ(t) =
[

φT1 (t), · · · , φTn(t)
]T

, MAS (1) with (11) can be

rewritten as

ẋ(t) = − (L(t)⊗ Im)x(t) + φ(t). (12)

Lemma 6: [37] Let b(t) be a bounded function, iflim
t→∞

b(t) = b and 0 < γ < 1, then

lim
t→∞

∫ t

0
γt−sb(s) ds = − b

lnγ
.

Lemma 7: [38] Given a symmetric matrixP = (pij)n×n with 0 eigenvalue and a vector

x = [x1, · · · , xn]T , if P1n = 0, then it holdsxTPx = −
n
∑

i=1

n
∑

j=i+1

pij(xi − xj)
2.

Lemma 8:Given a linear systeṁx(t) = Ax(t) + u(t), if the state matrixA ∈ Rn×n is

Hurwitz stable andu(t) ∈ Rn satisfies‖u(t)‖ <∞ and lim
t→∞

u(t) = 0, then the linear system is

asymptotically stable to zero, i.e.,lim
t→∞

x(t) = 0.

Proof: Since matrixA is Hurwitz stable, all of its eigenvalues have negative realparts.

Based on theory of Schur’s unitary triangularization, there exists a unitary matrixU ∈ Cn×n

such that

UHAU =















λ1 λ12 · · · λ1n

0 λ2 λ23 λ2n
...

...
. ..

...

0 0 0 λn















∆
=Λ

whereλi is the eigenvalue of matrixA, i = 1, · · · , n; UH is the conjugate transpose matrix

of U . Denotey(t) = UHx(t) and r(t) = UHu(t), we haveẏ(t) = Λy(t) + r(t). By the

fact that lim
t→∞

u(t) = 0, we have lim
t→∞

r(t) = 0. Let y(t) = [y1(t), · · · , yn(t)]T and r(t) =
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[r1(t), · · · , rn(t)]T , we haveẏn(t) = λnyn(t)+rn(t). The termrn(t) can be viewed as an control

input of the linear system and we haveyn(t) = eλntyn(0)+
∫ t

0
eλn(t−τ)rn(τ)dτ . Since the real part

of λn is negative, it holds0 < eλn < 1. By Lemma 6, it can be concluded thatlim
t→∞

yn(t) = 0.

Sinceẏi(t) = λiyi(t) +
( n
∑

j=1

λi(i+j)yi+j(t) +ri(t)
)

. Through the similar approach foryn(t), we

can concludelim
t→∞

(

n
∑

j=1

λi(i+j)yi+j(t) + ri(t)

)

= 0. Reusing Lemma 6 yieldslim
t→∞

yi(t) = 0 for

any i = 1, · · · , n. This and the factx(t) = Uy(t) imply lim
t→∞

x(t) = 0.

To prove the fact that MAS (1) with (11) solves CFP (3), it is necessary to analyze the

convergence of MAS (1) with (11). Obviously, the conditionsfor convergence depend on the

connectivity of the graphs. In the following, we will provide the convergence conditions under

the fixed graph and the time-varying graph, respectively.

A. Convergence under the fixed communication graph

Proposition 1: Suppose‖φi(t)‖ < ∞ and lim
t→∞

φi(t) = 0 in (11), i ∈ V, if the fixed

graphG(A) is directed and has a spanning tree, then MAS (1) with (11) reaches consensus

asymptotically.

Proof: Define a variablêx(t) =
n
∑

i=1

wixi(t)
n
∑

i=1
wi

=
(

wT

1Tw
⊗ Im

)

x(t), wherew = [w1 · · ·wn]T is

L’s left eigenvector associated with 0 eigenvalue. Based on (12), we have˙̂x(t) =
(wT⊗Im)

1Tw
u(t).

Denoteei(t) = xi(t) − x̂(t) and e(t) =
[

eT1 (t), · · · , eTn (t)
]T

. Note that if lim
t→∞

e(t) = 0, then

MAS (1) with (11) reaches consensus. From (12), we have

ė(t) = −(L⊗ Im)x(t) +

((

In −
1nwT

1Tnw

)

⊗ Im

)

φ(t)

= −(L⊗ Im)x(t) + (L⊗ Im)

(

1nwT

1Tnw
⊗ Im

)

x(t)

+

((

In −
1nwT

1Tnw

)

⊗ Im

)

φ(t)

= −(L⊗ Im)e(t) +

((

In −
1nwT

1Tnw

)

⊗ Im

)

φ(t)

(13)

where the second equation holds for the fact thatL1n = 0. Note that 1√
wTw

LTw = 0. Now we

use 1√
wTw

w to form a set of orthonormal basis on∈ C
n, denoted by 1√

wTw
w, p2, · · · , pn. We

defineP = ( 1√
wTw

w, p2, · · · , pn). It is obvious thatP is a unitary matrix, so we can denote
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P TLP =

















0 | 0 · · · 0

∗
...

∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

L1

















.

SinceG(A) has a spanning tree, by Lemma 1,L has only one 0 eigenvalue and other eigenvalues

have positive real part. This implies−L1 is Hurwitz stable. Now definẽe(t) = (P T ⊗ Im)e(t).

From (13), we have

˙̃e(t) = −(P TLP ⊗ Im)ẽ(t) +

((

P T − P T1nwT

1Tnw

)

⊗ Im

)

φ(t). (14)

Let ẽ(t) = [ẽT1 (t), ẽ
T
2 (t)]

T , whereẽ1(t) ∈ Rm and ẽ2(t) ∈ R(n−1)m. By (14), we have

˙̃e1(t) =

((

1√
wTw

wT −
1√
wTw

wT1nwT

1Tnw

)

⊗ Im

)

φ(t) = 0.

Note thatẽ1(t) = 1√
wTw

(wT ⊗ Im)e(t) =
1√
wTw

(wT ⊗ Im)
((

In − 1nwT

1Tnw

)

⊗ Im

)

x(t) = 0. Thus,

it holds ẽ1(t) = 0 for any t ≥ 0. Moreover, we have

˙̃e2 = − (L1 ⊗ Im) ẽ2 +











(

pT2 − pT2 1nwT

1Tnw

)

⊗Im
...

(

pTn − pTn1nwT

1Tnw

)

⊗Im











φ(t).

Since lim
t→∞

φ(t) = 0, by Lemma 8, we havelim
t→∞

ẽ2(t) = 0. This and the fact thatlim
t→∞

ẽ1(t) = 0

imply lim
t→∞

e(t) = 0. This leads to the validity of this result.

Theorem 3:If the fixed graphG(A) is directed and strongly connected, then MAS (1) with

(11) reaches consensus asymptotically, and the consensus state is located in setX∗.

Proof: Since the graph is strongly connected, by Lemma 2, there exists a vectorw =

[w1 · · ·wn]T > 0 such thatwTL = 0. Consider a positive-definite Lyapunov function candidate

V (t) = 1
2

n
∑

i=1

wi‖xi(t)−x0‖2, wherex0 ∈ X∗. By the definition ofg+i , it holdsg+(x0) = ‖x0‖X =

0. Based on the property of subgradient, we have
〈

xi(t)− x0,∇g+i (xi(t))
〉

≥ g+i (xi(t)). Taking
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the derivative of functionV (t) with respect tot yields

V̇ (t) =

n
∑

i=1

wi 〈xi(t)− x0, ẋi(t)〉

=

n
∑

i=1

wi
〈

xi(t)− x0,
∑

i∈Ni(t)

aij(t)(xj(t)− xi(t))− τ [xi(t)

− PXi
(xi(t))]− τ∇g+i (xi(t))

〉

=
n
∑

i=1

∑

i∈Ni(t)

wiaij 〈xi(t)− x0, xj(t)− xi(t)〉

− τ

n
∑

i=1

wi 〈xi(t)− x0, x(t)− PXi
(xi(t))〉

− τ

n
∑

i=1

wi
〈

xi(t)− x0,∇g+i (xi(t))
〉

.

(15)

Denotex(t) =
[

xT1 (t), · · · , xTn (t)
]T

, we have

n
∑

i=1

∑

i∈Ni(t)

wiaij 〈xi(t)− x0, xj(t)− xi(t)〉 = − (x(t)− (1n ⊗ Im)x0)
T (WL⊗ Im) x(t)

= −xT (t)
(

WL+ LTW

2
⊗ Im

)

x(t)

+ xT0
(

wTL⊗ Im
)

x(t)

= xT (t)

(

W (−L) + (−L)TW
2

⊗ Im

)

x(t)

= −
n
∑

i=1

n
∑

j=i+1

wiaij + wjaji

2
‖xj(t)− xi(t)‖2

≤ 0

(16)

whereW = diag(w) is a diagonal matrix formed byw and the last equation results from Lemma

7. By Lemma 4, we know−〈xi(t)− x0, xi(t)− PXi
(xi(t))〉 ≤ −‖xi(t)‖2Xi

≤ 0. Based on (15)

and (16), we have

V̇ (t) ≤ −τ
n
∑

i=1

wi ‖xi(t)‖2Xi
− τ

n
∑

i=1

wig
+
i (xi(t)). (17)

Note that g+i (xi(t)) ≥ 0. Thus, V̇ (t) ≤ 0. Moreover,V (t) is bounded by zero, it can be

concluded thatV (t) converges andV (∞) exists, which implies‖xi(t) − x0‖ converges and

July 3, 2021 DRAFT



15

‖xi(t)‖ is bounded. By (17), we have

τ

∫ ∞

0

n
∑

i=1

wi ‖xi(t)‖2Xi
dt + τ

∫ ∞

0

n
∑

i=1

wig
+
i (xi(t))dt

≤ V (0)− V (∞)

<∞.

Thus, it holds
∫∞
0

‖xi(t)‖2Xi
dt < ∞ and

∫∞
0
g+i (xi(t))dt < ∞. These implylimt→∞

∥

∥xi(t)

−PXi
(xi(t))

∥

∥ = limt→∞ g+i (xi(t)) = 0 for each i ∈ V. By the definition of the subgradient

∇g+i (·), we can concludelim
t→∞

φi(t) = 0 for i ∈ V. By the continuity ofg+i (xi(t)) and the

boundedness of‖xi(t)‖, it can be concludedφi(t) is bounded. Recall Proposition 1, we know

MAS (1) with (11) reaches consensus asymptotically, denotex∗ as the consensus state, i.e.,

lim
t→∞

xi(t) = x∗ for eachi ∈ V. Therefore,x∗ ∈ X∗. The validity of this result is verified.

Remark 3:The strongly connected condition proposed in Theorem 3 is sufficient to solve

CFP (3). In fact, it is also necessary in many cases. Now we setan example to illustrate that the

CFP can not be solved by the MAS if the graph is not strongly connected. Suppose graphG is

not strongly connected, then there exists at least one strongly connected component that can not

receive information from others. We denote the set consisting of all agents in this component

by V1. Suppose that all agents inV1 are constrained by inequalityx ≤ 0. If we setxi(0) = 0

for eachi ∈ V1, then it holdsxi(t) = 0 for any t > 0 and i ∈ V1. In another strongly connected

component, if there exists one agent that is constrained by inequalityx ≤ −1, it is easy to see

that the CFP can never be solved under such a graph.

If communication graphG(A) is bidirectional andaij = aji for eachi ∈ V, G(A) becomes

an undirected graph. For the undirected case, we state the result as follows.

Corollary 2: If the fixed graphG(A) is undirected and connected, then MAS (1) with (11)

reaches consensus asymptotically, and the consensus stateis in setX∗.

B. Convergence under the time-varying communication graph

For system (12), by the properties of linear systems [39], the solution of system (12) can be

written as follows.

x(t) = (Φ(t, s)⊗ Im)x(s) +

∫ t

s

(Φ(t, τ)⊗ Im) u(τ)dτ (18)
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whereΦ(t, s)⊗ Im is the state-transition matrix from statex(s) to statex(t) with t ≥ s ≥ 0.

Now, for time-varying graphG(t), the following assumptions are given.

Assumption 3:The communication graphG(t) is balanced.

Assumption 4:The δ−digraphG(δ,T ) is strongly connected.

Lemma 9: [37] Under Assumptions 3 and 4, for anyt ≥ s ≥ 0, Φ(t, s) in (18) satisfies the

following inequality
∣

∣

∣

∣

[Φ(t, s)]ij −
1

n

∣

∣

∣

∣

≤ γt−s, i, j ∈ {1, · · · , n} (19)

whereγ =
(

1− 1

(8n2)⌊n/2⌋

)
1

(⌊1/δ⌋+1)⌊n/2⌋T
, the operator⌊x⌋ denotes the largest integer not larger

than the value ofx.

Proposition 2: Under Assumptions 3 and 4, if‖φi(t)‖ <∞ and lim
t→∞

φi(t) = 0 in (11), i ∈ V,

then MAS (1) with (11) reaches consensus asymptotically.

Proof: Since G(t) is balanced, by Peano-Baker formula (see [39] for detail), it can be

concluded thatΦ(t, s) is a double stochastic matrix. Denotex̄(t) = 1
n

n
∑

i=1

xi(t), by (18), we have

x̄(t) =
1

n

(

1Tn ⊗ Im
)

x(s) +
1

n

∫ t

s

(

1Tn ⊗ Im
)

u(τ)dτ . (20)

Based on (18) and (20), we have

x(t)− 1

n
(1n ⊗ Im) x̄(t) =

((

Φ(t, 0)− 1

n
1n1Tn

)

⊗ Im

)

x(0)

+

∫ t

s

((

Φ(t, τ)− 1

n
1n1Tn

)

⊗ Im

)

u(τ)dτ .

(21)

Applying (19) in Lemma 9 to equation (21) yields
∥

∥

∥

∥

x(t)− 1

n
(1n ⊗ Im) x̄(t)

∥

∥

∥

∥

≤
√
mnγt ‖x(0)‖+

√
mn

∫ t

s

γt−τ ‖u(τ)‖dτ .

Since0 < γ =
(

1− 1

(8n2)⌊n/2⌋

)
1

(⌊1/δ⌋+1)⌊n/2⌋T
< 1 and lim

t→∞
‖u(t)‖ = 0, by Lemma 6, we have

lim
t→∞

∥

∥x(t)− 1
n
(1n ⊗ Im) x̄(t)

∥

∥ = 0. This leads to the validity of this result.

Theorem 4:Under Assumptions 1, 3 and 4, iflim
t→∞

φi(t) = 0 in (11), i ∈ V, then MAS (1)

with (11) reaches consensus asymptotically, and the consensus state is in setX∗.
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Proof: Consider a positive-definite Lyapunov function candidateV (t) = 1
2

n
∑

i=1

‖xi(t)−x0‖2,
wherex0 ∈ X∗. Taking the derivative of functionV (t) with respect tot yields

V̇ (t) =

n
∑

i=1

〈xi(t)− x0, ẋi(t)〉

=

n
∑

i=1

∑

i∈Ni(t)

aij(t)
〈

xi(t)− x0, xj(t)− xi(t)
〉

+

n
∑

i=1

〈

xi(t)− x0, φi
〉

.

(22)

If G(t) is balanced, we have1TnL = 0. This implies that
n
∑

i=1

∑

i∈Ni(t)

aij(t)
〈

xi(t) − x0, xj(t) −

xi(t)
〉

≤ 0. The following proof is similar to Theorem 3 and hence it is omitted.

V. D ISCRETE-TIME DISTRIBUTED ALGORITHMS FOR SOLVINGCFPS

In this section, for discrete-time MAS (2), the following input is presented to solve CFP (3).






























































ui(t) = h
∑

j∈Ni

aij(xj(t)− xi(t)) + φi(t)

∇i(t) = β(t)∇g+i (t)

ξi(t) = xi(t) + h
∑

j∈Ni

aij(xj(t)− xi(t))−∇i(t)

ϕi(t) = α(t) (ξi(t)− PXi
(ξi(t)))

φi(t) = −∇i(t)− ϕi(t)

i ∈ V (23)

where∇g+i (t) denotes the subgradient of functiong+i (y) at y = xi(t)+h
∑

j∈Ni

aij(xj(t)−xi(t)),

h is the control gain to be designed. Note that each agent has only access to the information

from its own inequality and set, as well as its own state and the relative states between itself

and its neighbors, thus (23) is distributed.

Assumption 5:∇g+i (·) ≤ K for someK ≥ 0, i = 1, · · · , n.

Lemma 10:Given a linear systemx(t + 1) = Ax(t) + u(t), if the state matrixA ∈ Rn×n is

Schur stable and the control inputu(t) ∈ Rn is such thatlim
t→∞

u(t) = 0, then the linear system

is asymptotically stable to zero, i.e.,lim
t→∞

x(t) = 0.

Proof: It can be proved by the similar approach in Lemma 8 and using the fact that

lim
k→∞

k
∑

l=0

ρk−l(A) ‖u(l)‖ = 0 for 0 < ρ(A) < 1, which has been proved in [23].

The properties of graph’s Laplacian matrix lead to the following lemmas directly [33].
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Lemma 11:For an undirected graphG(A), if G(A) is connected and0 < h < 2
λn

, then it

holds max
2≤i≤n

|1− hλi(L)| < 1.

Lemma 12:For a directed graphG(A), if G(A) has a spanning tree and0 < h < min
2≤i≤n

2Re(λi(L))

|λi(L)|2
,

then it holdsmax
2≤i≤n

|1− hλi(L)| < 1.

Proposition 3: Suppose lim
t→∞

φi(t) = 0 in (23), i ∈ V, if the undirected graphG(A) is

connected and0 < h < 2
λn

, then MAS (2) with (23) reaches consensus asymptotically.

Proof: Let x(t) =
[

xT1 (t), · · · , xTn (t)
]T

andφ(t) =
[

φT1 (t), · · · , φTn(t)
]T

, MAS (2) with (23)

can be rewritten as

x(t + 1) = ((I − hL)⊗ Im)x(t) + φ(t). (24)

Denote variablēx(t) = 1
n

n
∑

i=1

xi(t) = 1
n

(

1Tn ⊗ Im
)

x(t). Based on (24), we havēx(t + 1) =

x̄(t) + u(t). Denoteei(t) = xi(t)− x̄(t) and e(t) =
[

eT1 (t), · · · , eTn (t)
]T

. Note that ife(t) → 0

as t→ ∞, then MAS (2) with (23) reaches consensus asymptotically. From (24), we have

e(t + 1) = ((I − hL)⊗ Im)e(t) +

((

In −
1

n
1n1Tn

)

⊗ Im

)

φ(t). (25)

SinceL is symmetric forG being undirected. We selectpi ∈ Rn such thatpTi L = λi(L)p
T
i

and form an unitary matrixP =
[

1n√
n
, p2, · · · , pn

]

to transformI − hL into a diagonal form

diag(1, (1− h)λ2(L), · · · , (1− h)λn(L)) = P T (I − hL)P . Denoteẽ(t) = P Te(t) and partition

ẽ(t) into two parts , i.e.,̃e(t) = [ẽT1 (t), ẽ
T
2 (t)]

T . Then, from (25), we have

ẽ1(t+ 1) =

((

1√
n

1Tn

(

In −
1

n
1n1Tn

))

⊗ Im

)

φ(t).

Note that
(

1√
n

1Tn
(

In − 1
n

1n1Tn
)

)

⊗ Im = 0 and ẽ1(t) = 1√
n

(

1Tn ⊗ Im
)

e(t) = 1√
n

n
∑

i=1

ei(t) = 0.

Thus, it holdsẽ1(t) = 0. Moreover, we have

ẽ2(t+ 1) = Λẽ2(t) +











(

pT2 − 1
n
pT2 1n1Tn

)

⊗ Im
...

(

pTn − 1
n
pTn1n1Tn

)

⊗ Im











φ(t)

whereΛ = diag((1−hλ2(L))Im, · · · , (1−hλn(L))Im). By Lemma 11, we know if0 < h < 2
λn

,

Λ is Schur stable. Recalling Lemma 10 yieldslim
t→∞

ẽ2(t) = 0. This and the fact thatlim
t→∞

ẽ1(t) = 0

imply lim
t→∞

e(t) = 0, which leads to the validity of this result.
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Proposition 4: Suppose lim
t→∞

φi(t) = 0 in (23), i ∈ V, if the directed graphG(A) has

a spanning tree and0 < h < min
2≤i≤n

2Re(λi(L))

|λi(L)|2
, then MAS (2) with (23) reaches consensus

asymptotically.

Proof: It can be proved by replacing the variablex̄(t) in the proof of Proposition 3 with

x̂(t) defined in the proof of Proposition 1, and using the fact thatmax
2≤i≤n

|1− hλi(L)| < 1 if G
has a spanning tree and0 < h < min

2≤i≤n
2Re(λi(L))

|λi(L)|2
, which is stated in Lemma 12.

Now we give the convergence condition for (2) with (23) and its proof in detail when the

graph is directed.

Theorem 5:Under Assumptions 1 and 5, suppose{α(t)}, {β(t)} are two sequences such that

(a) α(t) ∈ [0, 1],
∞
∑

t=0

α(t) → ∞ and
∞
∑

t=0

α2(t) <∞;

(b) 0 ≤ β(t) ≤ ∞,
∞
∑

t=0

β(t) → ∞ and
∞
∑

t=0

β2(t) <∞.

If the directed graphG(A) is strongly connected and0 < h < ̺, where̺ = min
[

1

max
1≤i≤n

(

n
∑

j=1
aij

) ,

min
1≤i≤n

2Re(λi(L))

|λi(L)|2
]

. Then, MAS (2) with (23) reaches consensus asymptotically,and the consensus

state is in setX∗.

Proof: Since the graph is strongly connected, by Lemma 2, there exists a vectorw =

[w1 · · ·wn]T > 0 such thatwTL = 0. Submitting (23) to (2), we have

xi(t + 1) = ξi(t)− ϕi(t), i ∈ V.

Consider the positive-definite Lyapunov function candidate V (t) =
n
∑

i=1

wi‖xi(t) − x0‖2, where

x0 ∈ X∗. Taking the difference of functionV (t) yields

∆V (t) = V (t+ 1)− V (t)

=
n
∑

i=1

wi‖ξi(t)− ϕi(t)− x0‖2 −
n
∑

i=1

wi‖xi(t)− x0‖2

=

n
∑

i=1

wi‖(1− α(t))(ξi(t)− x0) + α(t)(PXi
(ξi(t))− x0)‖2

−
n
∑

i=1

wi‖xi(t)− x0‖2

≤
n
∑

i=1

wi

(

(1− α(t))‖ξi(t)− x0‖+ α(t)‖PXi
(ξi(t))− x0)‖

)2
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−
n
∑

i=1

wi‖xi(t)− x0‖2

≤
n
∑

i=1

wi‖ξi(t)− x0‖2 −
n
∑

i=1

wi‖xi(t)− x0‖2

=
n
∑

i=1

wi‖yi(t)− x0‖2 −
n
∑

i=1

wi 〈∇i(t), yi(t)− x0〉

+

n
∑

i=1

wi‖∇i(t)‖2 −
n
∑

i=1

wi‖xi(t)− x0)‖2

(26)

where yi(t) = xi(t) + h
∑

j∈Ni

aij(xj(t) − xi(t)) and the last inequality follows form using the

non-expansiveness property of projection operator, i.e.,‖PXi
(ξi(t))−x0)‖ ≤ ‖ξi(t)−x0‖. Since

∇g+i (t) denotes the subgradient of functiong+i (y) at y = yi(t), we have

− 〈∇i(t), yi(t)− x0〉 ≤ −β(t)g+i (yi(t)) ≤ 0. (27)

Moreover, since0 < h < 1

max
1≤i≤n

(

n
∑

j=1
aij

) , we have0 < 1− h
n
∑

j=1

aij < 1. By the convexity of the

norm square function, it holds

‖yi(t)− x0‖2 = ‖(1− h
∑

j∈Ni

lij)(xi(t)− x0) + h
∑

j∈Ni

lij(xj(t)− x0)‖2

≤ (1− h
∑

j∈Ni

lij)‖xi(t)− x0‖2 + h
∑

j∈Ni

lij‖xj(t)− x0‖2.

Thus, we have
n
∑

i=1

wi‖yi(t)− x0‖2 ≤
n
∑

i=1

wi(1− h
∑

j∈Ni

lij)‖xi(t)− x0‖2

+ h

n
∑

i=1

wi
∑

j∈Ni

lij‖xj(t)− x0‖2

=

n
∑

i=1

wi‖xi(t)− x0‖2 − h

n
∑

i=1

wi

(

n
∑

j=1

lij

)

‖xi(t)− x0‖2

+ h

n
∑

j=1

(

n
∑

i=1

wilij

)

‖xj(t)− x0‖2

=
n
∑

i=1

wi‖xi(t)− x0‖2

(28)
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where the last equation results from the fact that
n
∑

j=1

lij = 0 and
n
∑

i=1

wilij = 0. Submitting (27)

and (28) into (26) yields

∆V (t) ≤ −β(t)
n
∑

i=1

wig
+
i (yi(t)) +

n
∑

i=1

wi‖∇i(t)‖2. (29)

From (29), we haveV (t) ≤ V (0)+
t−1
∑

t=0

β2(t)(wT1n)K ≤ V (0)+
∞
∑

t=0

β2(t)(wT1n)K <∞. By the

definition ofV (t), it can be concluded thatxi(t) is bounded. By the fact that‖∇i(t)‖ <∞, we

know ‖ξi(t)‖ < ∞, this and the continuity ofPXi
(ξi) imply ‖ξi(t)− PXi

(ξi(t))‖ < ∞. Thus,

lim
t→∞

ϕi(t) = 0. Since graphG(A) is strongly connected and0 < h < min
2≤i≤n

2Re(λi(L))

|λi(L)|2
, from

Proposition 4, it can be concluded that MAS (2) with (23) reaches consensus asymptotically,

i.e., lim
t→∞

‖xi(t)− xj(t)‖ = 0 for all i, j ∈ V. Moreover, similar to (26), we have

∆V (t) = V (t+ 1)− V (t)

=
n
∑

i=1

wi‖yi(t)− x0 −∇i(t)− ϕi(t)‖2 −
n
∑

i=1

wi‖xi(t)− x0)‖2

=

n
∑

i=1

wi‖yi(t)− x0 −∇i(t)− ϕi(t)‖2 −
n
∑

i=1

wi‖xi(t)− x0)‖2

=

n
∑

i=1

wi‖yi(t)− x0‖2 − 2

n
∑

i=1

wi 〈∇i(t) + ϕi(t), yi(t)− x0〉

+
n
∑

i=1

wi‖∇i(t) + ϕi(t)‖2 −
n
∑

i=1

wi‖xi(t)− x0)‖2

≤ −2

n
∑

i=1

wi 〈∇i(t) + ϕi(t), yi(t)− x0〉+
n
∑

i=1

wi‖∇i(t) + ϕi(t)‖2

= −2

n
∑

i=1

wi 〈∇i(t), yi(t)− x0〉 − 2

n
∑

i=1

wi 〈ϕi(t), ξi(t)− x0〉

− 2
n
∑

i=1

wi 〈ϕi(t),∇i(t)〉+
n
∑

i=1

wi‖∇i(t) + ϕi(t)‖2

= −2
n
∑

i=1

wi 〈∇i(t), yi(t)− x0〉 − 2
n
∑

i=1

wi 〈ϕi(t), ξi(t)− x0〉

+

n
∑

i=1

wi
(

‖∇i(t)‖2 + ‖ϕi(t)‖2
)
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≤ −2β(t)

n
∑

i=1

wig
+
i (xi(t))− 2α(t)

n
∑

i=1

wi‖ξi(t)‖2Xi

+
n
∑

i=1

wi
(

‖∇i(t)‖2 + ‖ϕi(t)‖2
)

(30)

where the first inequality results directly from (28). Note that
∞
∑

t=0

n
∑

i=1

wi (‖∇i(t)‖2 + ‖ϕi(t)‖2) <

∞ and −2β(t)
n
∑

i=1

wig
+
i (xi(t)) − 2α(t)

n
∑

i=1

wi‖ξi(t)‖2Xi
< 0. By Lemma 5 and the fact that

lim
t→∞

xi(t) = lim
t→∞

xj(t), it can be concludedV (t) converges and it holds
∞
∑

t=0

(β(t)
n
∑

i=1

wig
+
i (xi(t))+

α(t)
n
∑

i=1

wi‖ξi(t)‖2Xi
) < ∞. Since β(t)g+i (xi(t)) > 0 and α(t)‖ξi(t)‖2Xi

> 0 for all t > 0

and i = 1, · · · , n, we have
∞
∑

t=0

β(t)g+i (xi(t)) < ∞ and
∞
∑

t=0

α(t)‖ξi(t)‖2Xi
< ∞. By the facts

∞
∑

t=0

α(t) → ∞ and
∞
∑

t=0

β(t) → ∞, we havelim
t→∞

inf ‖ξi(t)− PXi
(ξi(t))‖ = lim

t→∞
inf g+i (xi(t)) = 0.

Thus, there exists a subsequence{xi(tk)} of xi(t) such thatlim
k→∞

xi(tk) = x∗i , wherex∗i is a vector

such thatg+i (x
∗
i ) = hi(x

∗
i ) = 0 for eachi = 1, · · · , n. Recall the fact thatlim

t→∞
xi(t) = lim

t→∞
xj(t),

we havex∗i = x∗j for any i, j ∈ V. Let x∗ = x∗i , we have lim
k→∞

xi(tk) = x∗. By the fact
n
∑

i=1

wi‖xi(t)−x0‖2 converges andlim
t→∞

ẋi(t) = 0, we can concludelim
t→∞

xi(t) = lim
k→∞

xi(tk) = x∗.

Furthermore, note that∇i(t) → 0 as t → ∞, thus lim
t→∞

inf ‖ξi(t)− PXi
(ξi(t))‖ = 0 and

lim
t→∞

xi(t) = x∗ imply lim
t→∞

‖x∗ − PXi
(x∗)‖ = 0 for any i ∈ V. This meansx ∈ X = ∩ni=1Xi.

Therefore,x∗ is a feasible solution to CFP (3), i.e.,x∗ ∈ X∗.

Corollary 3: Under Assumptions 1 and 5, suppose{α(t)}, {β(t)} are two sequences such

that

(a) α(t) ∈ [0, 1],
∞
∑

t=0

α(t) → ∞ and
∞
∑

t=0

α2(t) <∞;

(b) 0 ≤ β(t) ≤ ∞,
∞
∑

t=0

β(t) → ∞ and
∞
∑

t=0

β2(t) <∞.

If the graphG(A) is undirected and strongly connected,0 < h < 1

max
1≤i≤n

n
∑

j=1
aij

. Then, MAS (2)

with (23) reaches consensus asymptotically, and the consensus state is in setX∗.

Proof: By Ger̆sgorin Disc theorem, we can concludeh < 2
λN

if h < 1

max
1≤i≤n

n
∑

j=1
aij

. Together

with Lemma 11, it can be proved by using the similar approach to Theorem 5 and hence the

proof is omitted.
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VI. A SPECIAL CASE: A DISTRIBUTED GRADIENT-BASED ALGORITHM FOR CFPS

INVOLVING LINEAR INEQUALITIES

In this section, we will develop a distributed gradient-based algorithm for the CFP as follows.






Aix− bi ≤ 0

x ∈ X :
∆
=∩ni=1Xi

i = 1, · · · , n (31)

whereAi ∈ Rmi×r andb ∈ Rmi . It assumes CFP (31) has a non-empty feasible solution setX∗.

For a vectory = [y1, · · · , yn]T , we definey+ = [y+1 , · · · , y+n ]T and y− = [y−1 , · · · , y−n ]T ,

wherey+i = max(yi, 0) andy−i = min(yi, 0). We introduce a functionψ(y) = ‖y+‖2. Note that

ψ(y) = 0 if and only if y ≤ 0. The functionψ(y) is convex and differentiable. See the following

lemma for detail.

Lemma 13:For any vectory ∈ Rr, the functionψ(y) = ‖y+‖2 is convex, differentiable and

its gradient function at pointy is ∇yψ(y) = 2y+.

Proof: . For any vectorz ∈ Rr, we haveψ(y+ z) = ‖(y+ z)+‖2 = ‖y+ z− (y+ z)−‖2 ≤
‖y + z − (y)−‖2 = ‖y+ + z‖2 ≤ ψ(y) + 2[y+]T z + ‖z‖2, where the first inequality follows

from the fact that(y + z)− = argminv≤0 ‖(y + z)− v‖. Moreover, it holds thatψ(y + z) =

‖(y+z)− (y+z)−‖2 = ‖(y++[y−+z− (y+z)−]‖2 ≥ ψ(y)+2[y+]T z+‖y−+z− (y+z)−‖2 ≥
ψ(y) + 2[y+]T z, where the first inequality follows from the fact that it holds that [y+]Ty− = 0

and [y+]T (y + z)− ≤ 0. Therefore, it holds thatlim
ε→0

ψ(y+ε∆y)−ψy
ε

= 2[y+]T∆y. This means

∇yψ(y) = 2y+. From the fact thatψ(y + z) ≥ ψ(y) + 2[y+]T z, we knowψ(y) is convex.

Now we present the following distributed gradient-based algorithm for CFP (31).

ẋi(t) =
∑

i∈Ni

aij(xj(t)− xi(t))− τ
(

ATi (Aixi(t)− bi)
+ + xi(t)− PXi

(xi(t))
)

, i = 1, · · · , n

(32)

whereτ > 0 is a positive coefficient,xi(t) ∈ Rr represents the estimation value of the solutions

to CFP (31).

Theorem 6:If the graphG(A) is strongly connected, thenxi(t) in (32) converges to a fixed

vectorx∗ asymptotically fori = 1, · · · , n andx∗ is in feasible solution setX∗ of (31).

Proof: By Lemma 13, it is not difficult to prove that the termATi (Aixi−bi)+ is the gradient

of function‖(Aixi− bi)
+‖2. It can also be viewed as the unique subgradient of‖(Aixi− bi)

+‖2.
Then this result can be proved by the same method as Theorem 3 and hence it is omitted.
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VII. SIMULATIONS

In this section, we give numerical examples to illustrate the obtained results. Consider a

multi-agent system consisting of five agents, the goal of theagents is to cooperatively search a

feasibility z∗ = [z∗1 , z
∗
2 ]
T of the CPF which includes two closed convex setsX1 = {(z1, z2)|2 ≤

z1 ≤ 4, 0 ≤ z2 ≤ 2} and X2 = {(z1, z2)|2.5 ≤ z1 ≤ 4.5, 1 ≤ z2 ≤ 3}, and three linear

inequalitiesc(z) = 2z1−3z2−2 ≤ 0, d(z) = 2z1+3z2−11 ≤ 0 andq(z) = 8z1−3z2−28 ≤ 0.

In Fig.1, the yellow region represents the feasible region.Set Xi is only known to agenti

for i = 1, 2, and agents 3, 4 and 5 can only have access toc(z), d(z), q(z), respectively. In

the following, we will present simulation results in three cases: The first two cases are for

continuous-time distributed algorithms under the fixed andtime-varying graphs, respectively.

The third case is for the discrete-time distributed algorithm under the fixed graph. For each case,

the communication graph is directed.

We first show the simulation result in the first case. The communication graph is shown in

Fig. 2, which is strongly connected. The weight of each edge connecting different agents is

1. Set coefficientτ = 20 and let the initial state of each agent bex1(0) = [0, 5]T , x2(0) =

[3,−2]T , x3(0) = [2, 3]T , x4(0) = [5, 1]T , x5(0) = [2,−3]T . The trajectory of MAS (1) with (11)

is shown in Fig. 3. All agents also reach consensus atz∗ = [2.58, 1.23]T which is a solution to

the CFP. This is consistent with the result established in Theorem 3.

Now, we show the simulation result in the second case, the communication topologies switch

between two bidirectional subgraphs depicted in Fig. 4 and the switching law is given by Fig. 5.

It is obvious that theδ−graph associated with the time-varying graph is strongly connected. The

weight of each edge connecting different agents is also being 1. Set coefficientτ = 35. Under

the same initial condition as the first case, the trajectory of MAS (1) with (11) is shown in Fig.

6. All agents reach consensus atz∗ = [2.61, 1.37]T while remaining in the feasible region of the

CFP. This is consistent with the result established in Theorem 4.

In addition, we show the simulation result in the third case.The communication topology in

the first case is used to conduct this simulation. Setα(t) = β(t) = 1
0.02t+1

andh = 0.25. Under

the same initial condition as the last two cases, the trajectory of MAS (2) with (23) is shown

in Fig. 7. All agents reach consensus atz∗ = [2.57, 1.54]T which is a solution to the CFP. This

accords with the result established in Theorem 5.
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Fig. 1. The feasible region of the CFP. Fig. 2. The communication graph in the first case.
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Fig. 3. The trajectory of the multi-agent system in the first case. Symbol “*” represents the initial states of agents while “◦”

represents the final states of them.

VIII. C ONCLUSIONS

In this paper, the CFPs have been studied for multi-agent systems through local interactions.

The distributed control algorithms were designed for both continuous- and discrete-time systems,

respectively. In each case, a centralized approach was firstintroduced to solve the CFP. Then

distributed control algorithms were proposed based on the subgradient and projection operations.

The conditions associated with connectivity of the communication graph were given to ensure

convergence of the distributed algorithms. The results showed that for the continuous-time case,

if the communication graph is fixed and strongly connected, the MAS can reach consensus
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Fig. 4. The communication graph in the second case, which consists of two subgraphs. The left one is labeled 1 and the right

one is labeled 2.
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Fig. 5. The switching law of the time-varying graph.
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Fig. 6. The trajectory of the multi-agent system in the second

case. Symbol “*” represents the initial states of agents while “◦”

represents the final states of them.

asymptotically and the consensus state is located in the solution set of the CFP. Moreover, the

same result can be achieved if theδ−graph associated with a time-varying graph is strongly

connected. For the discrete-time case, under the conditionof strong connectivity associated with

the directed graph, if the control gainh and the step-sizesα(t) andβ(t) are properly chosen,

convergence of the distributed algorithm can also be guaranteed. Furthermore, a distributed

gradient-based algorithm has been designed for a special case in which the CFP involves linear

inequalities. Finally, simulation examples have been conducted to demonstrate the effectiveness
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Fig. 7. The trajectory of the multi-agent system in the thirdcase. Symbol “*” represents the initial states of agents while “◦”

represents the final states of them.

of our results. Our future work will focus on some other interesting topics, such as the case

under quantization, time delays, packet loss and communication bandwidth constraints, which

will bring new challenges in solving CFPs over a network of agents.
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