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Distributed algorithms for solving a class of

convex feasibility problems

Kaihong Lu, Gangshan Jing, and Long Wang

Abstract

In this paper, a class of convex feasibility problems (CF&®) studied for multi-agent systems
through local interactions. The objective is to search aifda solution to the convex inequalities with
some set constraints in a distributed manner. The disagbabntrol algorithms, involving subgradient
and projection, are proposed for both continuous- and elis¢ime systems, respectively. Conditions
associated with connectivity of the directed communicatjcaph are given to ensure convergence of the
algorithms. It is shown that under mild conditions, theestadf all agents reach consensus asymptotically
and the consensus state is located in the solution set of Fife Eimulation examples are presented to

demonstrate the effectiveness of the theoretical results.
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I. INTRODUCTION

Distributed coordination control of multi-agent systeldASs) has been intensively inves-
tigated in various areas including engineering, naturedrnee, and social sciencel [1]-[3]. As a
fundamental coordination problem, the consensus whichireg) that a group of autonomous

agents achieve a common state has attracted much attesgieri4]-[11]. This is due to its
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wide applications in distributed control and estimatio][1distributed optimization [13]-[15]
and distributed methods for solving linear equations [{®&T].

Researches on consensus can be roughly categorized depemdivhether the agents have
continuous- or discrete- time dynamics. Noticeable wodau§ing on the multi-agent systems
include [6], [9], [18], [19] for the continuous-time casedafb], [19]-[21] for the discrete-time
case. In the aforementioned works, the agents interact @att other through a network and
each agent adjusts its own state by using only local infaondtom its neighbors. Within this
framework, connectivity of the communication graph playkeg role in achieving consensus,
and consequently several conditions of the connectivityehaeen established. For example,
the communication graph must have a spanning tree when godotyy is xed [6], while the
union of the communication graphs should have a spanniegreguently enough as the system
evolves when the topology is switching [9], [21]. In additjon nitely-joint connectedness, i.e.,
the in nitely occurring communication graphs are jointlprmmected, is necessary to make the
agents reach consensus when the topology is time-vary®ig [[19].

In recent years, the constrained consensus problem thieg seeeach state agreement in the
intersection of a number of convex sets has been widely iigated. In [22], a projection-based
consensus algorithm was proposed when the communicataphgs balanced. This algorithm
with time delays was studied in_[24], where the union of thenownication graphs within a
period was assumed to be strongly connected. The problenextasded to the continuous-time
case in [[25], where each set serves as an optimal solutioofsgtlocal objective function,
and the global optimal solution is achieved as long as thersettion of the constrained sets is
computed. By taking the advantages of the property thatdhgisn set of linear equations is an
af ne set, the projection-based consensus algorithm ir} Y& successfully applied to solving
linear equations in_[26], where the projection operatoi2b][was replaced with a special af ne
projection operator. Unlike the distributed algorithm folving linear equations in_[16], the
projection-based consensus algorithmlinl [26] does not meedstrict each agent's initial state
within the solution set of its corresponding equations. nethods in[[2R]{[26] are useful for
the computation of the intersection when the projectiorts time local sets are easily calculated.
However, in general, the application of the projected meéthsually requires the solution of an
auxiliary minimization problem associated with the proj@c onto the local set at each time.

This might lead to a limitation on its applications.

July 3, 2021 DRAFT



Comparing with computing the intersection and solving dinequations, a more general
problem is solving CFPs, which usually needs to solve liresarations and convex inequalities
simultaneously, and ensure the solution to be in the intése of some simple convex sets.
Applications of solving CFPs arise in different elds, sual pattern recognition [27], signal
processing [[28] and image restoration [[29], [[30]. It is alsell known that some convex
programming problems can be transformed into an equivd@&mR through the Karush-Kuhn-
Tucker condition[[31]. For example, the linear program peabin [32] can be transformed into
a set of linear equations and inequalities. Inspired by ik&ibuted methods for solving linear
equations|[16],[[26], distribute methods for CFPs will badséd in this paper. Different from
linear equations, the solution set of a CFP is usually nohpka af ne set due to the existence
of inequalities which can even be nonlinear, thus it is ne&gsto develop alternative methods
for solving this problem.

In this paper, distributed algorithms, involving subgeadiand projection, are proposed for
multi-agent systems to solve the CFP involving convex iraditjgs. Here the distributed control
algorithms are designed for the continuous- and the disd¢nete systems, respectively. Our aim
is to obtain the graphic criteria for the convergence of ¢halgorithms. One of the challenge
is that, the subgradient and projection operations leacdtdimearity of the algorithms. To deal
with this problem, the control inputs are decomposed intm@ak part involving the traditional
consensus term and a nonlinear part involving the subgradied projection operations. The
linear part is analyzed by using the graph theory and somie basories of stability associated
with linear systems, while the nonlinear part is done by lwagy theory. The contributions of
this paper are summarized as follows:

(1) Both continuous- and discrete-time distributed alidyonis are provided for solving CFPs.
Different from the distributed algorithms for solving liameequations in_[16],[17], in which the
algorithms need to restrict each agent's initial state mithe solution set of its corresponding
equations, the CFPs can be solved by the presented algerithder arbitrary initial states.

(2) The continuous-time distributed gradient-based dlgarhas also been investigated(in[36],
where convergence of the algorithm relies on a time-varpagmeter. Our algorithm does not
involve a time-varying parameter and it does not requireassumption on boundedness of the
subgradient as ir_[36]. We prove that, if the directed graphxed and strongly connected, all
agents' states will reach a common point asymptotically gr@dpoint is located in the solution
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set of the CFP. Moreover, we nd that the CFP can be solveddf thgraph associated with a
time-varying graph is strongly connected.

(3) Discrete-time distributed subgradient-based algoré have been studied in [22], where the
communication graph is balanced. Unlike|[22],1[23], in olgasithm, only relative information
between the agents is required and the convergence caneadsssbred when the communication
graph is unbalanced. We prove that the effectiveness ofrésepted algorithm can be guaranteed
when the directed graph is strongly connected.

This paper is organized as follows. In Sectidn I, we presemte notions in graph theory and
state the problem studied in this paper. In Sedfidn IlI, @@izied algorithms in both continuous-
and discrete-time cases for the CFP are focused on and tlrergence of them is analyzed. In
Sectior 1V, the distributed control algorithm in contingstime case is presented for the MAS to
solve the CFP, and the convergence is analyzed under bothard time-varying communication
graphs. The discrete-time case is studied in SeCfion V. ¢ti@€VI, a distributed gradient-based
algorithm is designed for a CFP involving linear inequakti Simulation examples are presented
in SectionVIl. Section_ VIl concludes the whole paper.

Notation: Throughout this paper, we uggj to represent the absolute value of scaaR
and C denote the set of real number and the set of complex numgeecavely. LetR™ be
the m-dimensional real vector space a@d be the complex one. For a given vectoR2 R™,
x> 0( 0)implies that each entry of vectoris greater than (not less than) zekxk denotes
the standard Euclidean norm, i.&xk = P xTx. For a functiong() : R™ | R, we denote its
plus function byg* () = max[g( ); 0]. 1, denotes theé-dimensional vector with elements being
all ones.l,, denotes then n identity matrix. The transposes of matrx and vectorx are
denoted af\" andx', respectively. For any two vectotsandv, the operatotu;vi denotes the

inner product ofu andv. For matricesA andB, the Kronecker product is denoted By B.

[l. PRELIMINARY AND PROBLEM FORMULATION
A. Graph theory

The communication topology is denoted BYA(t)) = ( V; E(t); A(t)), V is a set of vertices,
E(t) V V s an edge set, and the weighted matixt) = ( &; (t))» n» is @ non-negative
matrix for adjacency weights of edges. If nodean receive the information from nogle then

nodej is called as nodés neighbor and it is denoted ky; i) 2 E(t) anda; (t) > 0. Otherwise,
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a; (t) = 0. DenoteN;(t) = fj 2 Vj(j;i) 2 E(t)g to represent the neighbor set of nadat time

t. The Laplacian matrix of the graph is de ned b$t) = (I (t))n n, wherel; (t) = a; (t) if

i 6 ] andl; (t) = _p g (t)if i = j foranyi =1; ;n. Fora xed and directed grap&(A),

a path of lengthr f_rom nodei; to nodei,.; is a sequence af + 1 distinct nodes; o Y
such that(iq;iq+1) 2 E for q=1; ;r. If there exists a path between any two nodes/in
thenG(A) is said to be strongly connected. A directed graph, whereyawade has exactly one
neighbor except the root, is said to be a directed tree. Arspgriree of a directed graph is a
directed tree formed by graph edges that connect all theshofithe graph([33]. We say that a
graph has a spanning tree if a subset of the edges forms aisgdree.

For a time-varying and directed gra@{A(t)), (j;i) is called a edge if there always exist
two positive constant$ and such thatF\:t+T a; (s)ds foranyt 0. A Rgraph, induced
by G(A(1)), is de ned asG.r) = (V;E 1)), whereE.r)= (i)2V Vj "' a(s)ds

forany t 0 . The communication grap8(A(t)) is said to be balanced if the sum of the
interaction weights from and to an agenare equal, i.e., a; (t) = ai. ().

Lemma 1:[5] For a xed graphG(A), if G(A) has a spennlng tree then the Laplacian matrix
L has one simple 0 eigenvalue and the other eigenvalues haitv@aeal parts.

Lemma 2:[6] For a xed graphG(A), if G(A) is strongly connected, then there exists a
vectorw = [w;  w,]" > 0 such thaw™L = 0.

For ease of description, @(A) has a spanning tree, we usgL ) to represent the 0 eigenvalue

and i(L);i=2; ;N to represent other non-zero eigenvalues.

B. Convex analysis

A functionf () : R™! R is convex if it holdsf ( x + (1 y) fxX)+(@A )f (y) for
anyx 6 y2 R" and0O< < 1 Forconvex functioff (x),if hr f(x); vy x1i f(y) f(x)
holds for anyy 2 R™, thenr f (x) is a subgradient of functioh at pointx 2 R™. There must
exist subgradients for any convex function. Furthermdrthe convex function is differentiable,
its gradient is the unique subgradient.

Given a set R™,itis called as a convexsetix +(1 )y2 foranyscalaO< < 1
andx;y 2 . Foraclosed convex set letkxk = infy,, kx ykdenote the standard Euclidean

distance of vectox 2 R™ from . Then, there is a unique elemeRt (x) 2  such that
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kx P (x)k = kxk , whereP () is called the projection onto the set[34]. Moreover,P ()
has the non-expansiveness propekfy: (x) P (y)k k x yk foranyx;y 2 R™.

Lemma 3:For a convex functiog( ) : R™ ! R, suppose the set = fx 2 R"jg"(x) =0g
is non-empty, it holdg 2 X if and only if O is a subgradient of the plus functigh at pointz.

Proof: Suf ciency By the de nition ofg* ( ), we know functiong® () is convex. Therefore,

the subgradient of functiog® () always exists. If 0 is a subgradient of the plus functipnat
point z, by the de nition of the subgradient, we hagg(y) g"(z) O"(y 2z)=0 for any
y2 R™. Lety 2 X, then we have g"(z) 0. By this and the fact thag®(z) 0, it can be
concluded thag* (z) = 0.

Necessitylf z 2 X, we haveg® (z) = 0. Due to the fact thag* (y) O, we haveg*(y) O
0"(y z) foranyy 2 R™. Thus, 0 is a subgradient of the plus functigh at pointz. [ |

Lemma 4:[22] Given a closed convex set R™, it holds

P (x) x;x vyi k xk

foranyx 2 R™;y 2

C. Problem formulation

Consider a MAS consisting af agents, labeled by s&t = f1;, ;ng. Here we consider

agents with both continuous-time dynamics
xi(t) = ui(t);i 2V (1)
and discrete-time dynamics
Xi(t+1) = x(t) + u(t);i 2V 2)

wherex;(t) 2 R™ andu;(t) 2 R™ are respectively, the state and input of agerthe objectives
of this paper are to desigm (t) for (@) and [2) by using only local information to solve the

following CFP: 8
< g(x) O '
. i=1; ;n 3)
x2 X =\ X
wherex 2 R™, g() : R™ ! R is a convex function, it is continuous dnl ;1 ). Each

Xi is a closed convex set. Agentcan only have access to the information associated with
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subgradient g’ () and projectiorPy, ( ). We assume eaahg () is piecewise continuous for
anyi=1; ;n.

Remark 1:Note that if and only ifx 2 Xj, it holdsx = Pyx, (x). If x = Px,(x) for all
i=1; ; N, thenx belongs to their intersection. Since the algorithms in tikWwing sections
refer to the projection operatdty, ( ), here we only consider some convex s¥tsonto which
the projectionPx, (x) can be easily calculated or their expressions could be giveetail at any
pointx. For example, if seX represents the solution set of linear equatbr b=0,i.e., X =
fxja'™x b=0g, wherea;x 2 R™;b2 R, it is easy to show tha®y (x) = | % X + k;’%
is a projection ofx onto setX . Consequently, it is not dif cult to nd that the algorithma the
following sections are also available to the CFP involvimgr equations.

The solution set of CFRJ(3) is denoted Xy and the following assumption is adopted throughout
the paper.

Assumption 1:X is non-empty.

Note that a vectox belongs toX , if and only if it holds thatx 2 X andg’'(x ) =0 for
eachi 2f1; ;ng.

[1l. CENTRALIZED ALGORITHMS FORCFPs

In this section, we focus on the f%llowing CFP

< g(x) O
4)
X2 X

wherex 2 R™, g(): R™! R is a convex function, anX is a closed convex set.

A. Continuous-time case

To solve CFP[(#), the following continuous-time subgrati@md projection-based algorithm

is proposed.

x() = (OO  Px(x)]  (Or g"(x(1) (5)

where (t), (t) 2 R.
Theorem 1:Suppose CFPL{4) has a non-empty solutionXetif (t) Oand (t) O
R
satisfy that 01 (t'1 and 01 (t)'1 , thenx(t) in (§) converges to a vector in set
X .
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Proof: De ne a positive-de nite Lyapunov function candidatg(t) = %kx(t) Xok?, where
Xo 2 X . By the de nition of g*, it holds g* (xo) = kxokx = 0. Based on the property of the
subgradient, we havex(t) Xxo;r g*(X(t))i g*(x(t)). Taking the derivative of functiol (t)
with respect ta yields

h(t)  Xo; x(t)i
x(t)  xo;  (OX()  Px ()] Wr g"(x(1)
M) xox(t)  Px(x(®)i  (OX(E)  xoir g" (x(1))i

(O () xo;x(t) Px(x(t)i  (©)g"(x(1):
By Lemmal4, we knowh x(t) Xo;x(t) Px(x(t))i k x(t)ki¥ 0. Note thatg" (x(t))
0. Thus,\.(t) 0. Moreover,V (t) is bounded by zero, it can be concluded tkWdt) converges

(1)

(6)

andV (1 ) exists, which impliekx(t) Xok converges. By inequality {6), we have
Z
1 1
(t) kx(t)ks; i + (D" (x(t)de V(O V(@)<1:

0 0

Since (t)kx(t)ki and (t)g* (x(t)) are both non-negative, then we ha\Ffé (t) kx(t)K&
d <1 and 01 (t)g" (x(t))d; < 1 . These and the fact%1 t'!"1 and Rol t'!ri
imply tI!ilm inf kx(t) Px(x(t)k = “En inf g* (x(t)) = 0. Thus, there exists a subsequence
fx(tx)g of x(t) such thatkI!ilm X(ty) = Iti!rln inf x(t) = x , wherex is a point in the solution set
of CFP [4). Moreover, note that(x(t)) converges, it can be concluded tti'?n x(t)=x 2 X.
Hence, the validity of the result is veri ed. [ |

Corollary 1: Suppose CFH[4) has a non-empty solutionXetif x(t) adjusts its value with
the following dynamics

x() = [x(t) Px(x(®)] r g"(x(1)

thenx(t) converges to a vectot in setX .

B. Discrete-time case
Now we present the discr%te-time algorithm for CEP (4).
2 M=x® O g (xW)
M= 00 Px(®) (7)
x(t+1)= (1) " (1)
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wherePyx () andr g*(x(t)) are de ned as those inl(5).
Assumption 2ir g*(x(t)) K for someK 0.

Lemma 5:[35] Let f z(t)g be a non-negative scalar sequence such that
z(t+1) (1+at)z(t) bt)+ c(t)

P P
forallt O if alt) O/bt) Oct) Owith a(t)<1 and c(t) < 1, then the

=0 t=0
sequencd z(t)g converges to some constantand b(t) < 1.

t=0
Theorem 2:Under Assumption§]2, if CFRI(4) has a non-empty solutionXsetand (t) ,
(t) satisfy
P P
(@) (t) 2 [0;1], t)!1 and )< 1 ;

t—OP tzop
()0 t 1 , (t)!'1 and 2M)y< 1.
t=0 t=0
Then,x(t) in () converges to a vector in setX .
Proof: We choose the Lyapunov function candidate/gs) = kx(t) Xxok?, wherexy 2 X .

Taking the difference of functioW (t) along with [7) yields
V()= V(t+1) V()

K (D) ') xok? k x(f) xok?
k@ @) 1) X+ OCFPx( (1) xo)k* k x(t)  Xok? 8)

L (K () xok+ OKPx( (1) xok Kk x(t) xok

K (t) xok?® k x(t) Xok?
where the last inequality follows from the non-expansiwsnproperty of projection operator,
i.e., kKPx ( (1)) xo)k k (t) xok. Moreover, we have

k (1) Xok? k x(t) xok?* 2 (t)hr g"(x(t));x(t) Xol
+ 2(DK
k x(t)  xok® 2 (t) g"(x(t) g (o)
+ 2(HK:

(9)

From inequalitieg8) and (@), we have V(t) 2(t)K . Thus, it holds thav/(t) V(0) +
1 P
2K V(0) + 2(t)K < 1 . By the de nition of V(t), it can be concluded that
t=0 t=0
X(t) is bounded. Sincd (t)r g" (x(t))k < 1, (t) is bounded. This and the continuity of
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Px ( (1)) imply k (t) Px( (t))k < 1. Denoter (t) = (t)r g* (x(t)), sincerf M) < 1

anthI_:’0 2(t) < 1, it can be concluded th{t: kr (Hk?< 1 anthI_:’0 k' (t)k? < :O. Similar to
(8), we also have
V()= V(E+1) V()
= 2hr(t)+ ' (0):x()  Xoi + kr (1) + ' (K2
= 2hr (t);x(t) Xoi 2H (1); (1) Xoi
2H (t);r ()i + kr (D) + " (DK (10)

= 2hr ();x(1)  Xoi 2H (1); (1) xoi + kr (K2 + k' (K>
2 (g (x(1) 2 (Dk (D2 + kr (K2 + k' (1)K

2 ()g" (x(1)) 2 (Hk (t)kE + kr (k> + k' (t)k?:
P
Recall the fact that kr (t)k? + k' (t)k?> < 1 and 2 (t)g'(x(t)) 2 (Hk (ki < O
t=0
P
by Lemmalb, it can be concludedk(t) xok converges and it holds (g™ (x(1)) +
t=0
(tk ()ki < 1. Since (t)g"(x(t)) > 0 and (t)k (t)ki > O for all t > O, we have
P P P
(t)g" (x(t)) < 1 and (t)k (t)k& < 1 . By the facts (t)'1 and (t'1
t=0 t=0 t=0 t=0
we havetllilm infk (t) Px( (t)k = Mn inf g* (x(t)) = 0. Thus, there exists a subsequence
fx(tk)g of x(t) such thatkllilm X(tx) = x , wherex is a vector such thag™ (x ) = 0. By the
factkx(t) xok converges, we can conclug'iim x(t) = x . Furthermore, note that(t) ! Oas
t11 thustllilm infk (t) Px( (t)k=0 andtllilm x(t) = x imply tIlilm kx  Px(x)k=0.
Therefore x is a solution to CFPL{4), i.ex 2 X . [ |

V. CONTINUOUS-TIME DISTRIBUTED CONTROL ALGORITHMS FOR SOLVINGCFPs

In this section, we focus on solving CFP (3) for continuonset MAS (1) in a distributed
manner, which means that each agent has access to only itstaterand that from its neighbors.
The following ingut is proposed.

3 U= aOO 6O+ O
i2Ni (1) i2V (11)
i(t) = [Xi(t)  Px,(xi()]+ r g (xi(1))
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where is a positive coef cient. Note that; depends on only agents own state, so[(11)
is distributed. Based on Lemnia 3 in Section Il, here wersgt(x) = 0 if g(x) 0 and
r g (x) = r g(x) otherwise.

Remark 2:1f we set =0 in algorithm [11), then it will become a typical linear consas
algorithm for MASs studied in[]5],L16]. In this case, MASs oBaconsensus asymptotically
if the communication graph is xed and has a spanning treee @istributed subgradient-
based algorithm was studied for continuous-time multirig®/stems to optimize a sum of
convex objective functions in [36], but the convergencehaf algorithm relies on a time-varying
parameter and the projection term was not involved.

Letx(t) = xI(t); ;xT(t) " and ()= T(t); ; T(t) ', MAS (@) with (I1) can be
rewritten as

()= (LO) Im)x@®+ (1): (12)

LeFEnma 6:[37] Let b(t) be a bounded function, i!l!ilm bh(t) = band0 < < 1, then
fim g ©os) ds= >

Lemma 7:[38] Given a symmetric matri® = (pj)n n With O eigenvalue and a vector
X =[x1; ;%a]", if P1, =0, then it holdsx"Px = .p _ pn pi (Xi - Xj)2.

Lemma 8:Given a linear systenx(t) = Ax(t) + ul(:tl)f:ilf+%[he state matrixA 2 R" " is
Hurwitz stable andu(t) 2 R" satis esku(t)k < 1 andtl!ilm u(t) = 0, then the linear system is
asymptotically stable to zero, i-";"!jf“ x(t)=0.

Proof: Since matrixA is Hurwitz stable, all of its eigenvalues have negative aits.

Based on theory of Schur's unitary triangularization, éhexists a unitary matrixJ 2 C" "

such that 2 3
1 12 1in
0
UM AU = ' .2 .23 '2n _
O 0 0
where ; is the eigenvalue of matriA, i = 1; ;n; U" is the conjugate transpose matrix

of U. Denotey(t) = U"x(t) andr(t) = U"u(t), we havey(t) = y(t) + r(t). By the
fact thattllilm u(t) = 0, we havetllilm r(t) = 0. Let y(t) = [ya(t); ;yn(D)]" andr(t) =
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[ri(t);  ;ra()]7, we havey,(t) = oY (t)+ ra(t). The termr,(t) can be viewed as an control
input of the linear system and we haggt) = e "ty,(0)+ ge n(t Jr,( )d . Since the real part

of , is negative, it hold9 <e " < 1. By Lemmal®, it can be concluded thtl'sllm yn(t) =0.

P
Sincey;(t) = yi(t) + ii+))Yi+j (t) +ri(t) . Through the similar approach fgr(t), we
j=1 [

can concludgllilm jz ii+j)Yi+j(t) + ri(t) =0. Reusing Lemmal6 yieldti!a'lm yi(t) = 0 for
anyi =1; ;n. This and the fack(t) = Uy(t) imply tI!ilm x(t)=0. [ |

To prove the fact that MAS[{1) with[ (11) solves CHE (3), it iscessary to analyze the
convergence of MAS[{1) with[ (11). Obviously, the conditidies convergence depend on the
connectivity of the graphs. In the following, we will proedhe convergence conditions under

the xed graph and the time-varying graph, respectively.

A. Convergence under the xed communication graph

Proposition 1: Supposek (t)k < 1 and tIlilm i) =0 in (@), i 2V, if the xed
graph G(A) is directed and has a spanning tree, then MAS (1) with (11¢hes consensus
asymptotically.

. : — P wixi(t) —  w’ — T
Proof: De ne a variable®(t) = T = 7w Im X(t), wherew =[w;  wp] is
i=1 Wi

i=1
;
L's left eigenvector associated with 0 eigenvalue. Basedl@), f(ve haver(t) = (w Im)u(t).

1"w

Denotee(t) = x;(t) R(t) ande(t) = el(t); ;€ () . Note that iftllilm e(t) = 0, then
MAS (@) with (I11) reaches consensus. Framl (12), we have

1w’
)= (L Iax(®)+ In =% Im (1)
1w
1w’
= (L IX®*(L In) o e x(0)
1w’ n (13)
+ = Im (1)
1w
1w’
= (L Im)e®)+ Iy 1”T Im (1)
W
where the second equation holds for the fact thaf = 0. Note thatpﬁLTw = 0. Now we
use pﬁw to form a set of orthonormal basis & C", denoted bypﬁw; P2, Ppn. We
dene P = (p=w;p;; ;pn). It is obvious thatP is a unitary matrix, so we can denote
wTw
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0j 0 0

PTLP =
Ls

SinceG(A) has a spanning tree, by Leminallhas only one 0 eigenvalue and other eigenvalues

have positive real part. This impliesL; is Hurwitz stable. Now de neg(t) = (PT I,)e(t).

From (13), we have

PT1,w'
1w

Let e(t) = [€] (t); &1 (1)]7, whereey(t) 2 R™ andey(t) 2 R(™ Y™, By (14), we have
! !

et)y= (PTLP I.,)et)+ PT lm  (1): (14)

1 T pﬁWTanT. I 0
t) = p w t)=0:
a=  p— e )
Note thatey () = pi=(W" Im)e(t) = p2=(W' 1) I, 11“;WVJ lm X(t)=0. Thus,
it holds e;(t) =0 for anyt 0. Moreover, we have
2 3
T T
p12— p21:!'r|]_nv\:lv Im
&= (L Im)ez+§ : z (1):
T T
L.

Sincetl!ilm (t) =0, by Lemmad8, we havgilm &(t) = 0. This and the fact tha}l!ilm e(t)=0
imply tI!ilm e(t) = 0. This leads to the validity of this result. [ |
Theorem 3:If the xed graph G(A) is directed and strongly connected, then MAS (1) with
(@1) reaches consensus asymptotically, and the consetadadsslocated in seX .
Proof: Since the graph is strongly connected, by Lenimha 2, thereseaisvectorw =
W, wa]" > 0 such thatw™L = 0. Consider a positive-de nite Lyapunov function candidate
V(t) = %_Fn w;ikx;(t) Xok?, wherexy 2 X . By the de nition ofg", it holdsg* (xo) = kxokyx =

i=1
0. Based on the property of subgradient, we haxgt) xo;r g (xi(t)) ¢ (xi(t)). Taking

July 3, 2021 DRAFT



14

the derivative of functiorV/ (t) with respect ta yields

X
\A(P)

Wi hxi (1) Xo; X (1)
i=1
X
Wi Xi(t)  Xo; g (D(x; (1) xi(t))  [xi(t)
i=1 2N (1)

P, (i) 1 g7 (xi(1)

XX 4o
_ wiag () Xo;xj (1) xi(D)i
i=1 i2N;(t)
X

wi i (t)  Xo; x(t)  Px, (Xi(t))i

i=1
Wi Xi(t)  Xo;r g (xi(1)) :
i=1
Denotex(t) = xI(t); ;x} (1) T, we have
X X

wia; hi(t)  Xo;Xj(t)  Xi(t)i
i=1 i2N;(t)

(X(t) (1n |m)XO)T (Wl— Im)x(t)

WL+ LTW
X't ———— Im X

+ x5 WL Iy x(t)

WEDLOW

(16)
= x'(t)

XX A 4w
= W—la” 2WJ a“ ka (t) Xi(t)k2
i=1 j=i+l

0

whereW = diag(w) is a diagonal matrix formed by and the last equation results from Lemma
[7. By Lemmal4, we knowh x;(t) Xo;xi(t) Px,(xi(t))i k x(t)k§, 0. Based on[(15)
and [16), we have

X0 X0
\(t) w; kx; (K% wig' (xi(1)): (17)

i=1 i=1
Note thatg’ (xi(t)) 0. Thus, \(t) 0. Moreover, V (t) is bounded by zero, it can be

concluded thatv/(t) converges and/(1 ) exists, which implieskx;(t) Xk converges and
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kx;(t)k is bounded. By[(17), we have

Z 1y 2 Z 1y
w; kxi (t)ks dy + wig" (i (1)) d;
0 iz 0 =
V() V(1)
<1:

Thus, it ho|o|sR01 kxi(t)k%, d < 1 and Rol g" (xi(t)di < 1. These implylimy; — x;(t)

Px,(Xi(t)) =limy ¢ (xi(t)) = 0 for eachi 2 V. By the de nition of the subgradient
r g (), we can concludetl!ilm i(t) = 0 for i 2 V. By the continuity ofg’ (x;(t)) and the
boundedness dfx;(t)k, it can be concluded;(t) is bounded. Recall Proposition 1, we know
MAS (@) with (11) reaches consensus asymptotically, demot@s the consensus state, i.e.,
tI!ilm Xi(t) = x for eachi 2 V. Thereforex 2 X . The validity of this result is veried. &

Remark 3:The strongly connected condition proposed in Theorem 3 igisnt to solve
CFP [3). In fact, it is also necessary in many cases. Now warsekample to illustrate that the
CFP can not be solved by the MAS if the graph is not stronglynected. Suppose grafghis
not strongly connected, then there exists at least onegiyraonnected component that can not
receive information from others. We denote the set comgjsbf all agents in this component
by V;. Suppose that all agents Wy are constrained by inequality 0. If we setx;(0) =0
for eachi 2 V4, then it holdsx;(t) =0 for anyt> 0 andi 2 V;. In another strongly connected
component, if there exists one agent that is constrainechéguality x 1, it is easy to see
that the CFP can never be solved under such a graph.

If communication graplG(A) is bidirectional anda; = a; for eachi 2 V, G(A) becomes
an undirected graph. For the undirected case, we state sh# es follows.

Corollary 2: If the xed graph G(A) is undirected and connected, then MAS (1) withl (11)

reaches consensus asymptotically, and the consensussstateetX .

B. Convergence under the time-varying communication graph

For system[(12), by the properties of linear systems [39,dblution of systeni(12) can be

written as follows.
Z t

x®=(( ts) Im)x(e+ ((t ) Im)u()d (18)

S
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where ( t;s) | is the state-transition matrix from stax¢s) to statex(t) witht s 0.
Now, for time-varying graplG(t), the following assumptions are given.

Assumption 3:The communication grap8(t) is balanced.

Assumption 4:The  digraphG .t is strongly connected.

Lemma 9:[37] Under Assumptionsl3 arid 4, forany s 0, ( t;s) in (18) satis es the
following inequality

[( ts)]; % S ij2f1 ;ng (19)

1
(b1= c+1) bn=2cT

where = 1 1 , the operatobxc denotes the largest integer not larger

W
than the value ok.
Proposition 2: Under Assumptionis|3 and 4, kf ;(t)k < 1 andtI!ilm i(t)=0in ([@1),i 2V,
then MAS [1) with [11) reaches consensus asymptotically.
Proof: Since G(t) is balanced, by Peano-Baker formula (seel [39] for detdilzan be
concluded that( t;s) is a double stochastic matrix. Denot&) = % pl xi(t), by (18), we have

i=
Zt

x(t)=% 1 I x(s)+% S 1, Iy ou()d: (20)
Based on[(18) and_(20), we have
O S Ix®= (60 11 ln XO)
Z, 1 (21)
+ (t ) H1,11; Il u( )d:

S

Applying (19) in Lemmd.D to equation_(R1) yields
Z t
X(t) %(1n I'm) X(t) pﬁ Ykx(0)k + pﬁ b ku( )kd :

S

1
1 (b1= c+1) bn=2cT

Since0< = 1 T
tI!ilm x(t) %(1n Im)x(t) =0. This leads to the validity of this result. [ |

Theorem 4:Under AssumptionEl 1] 3 arid 4, tI'iim i(t)=0 in @), i 2V, then MAS 1)
with (11) reaches consensus asymptotically, and the censestate is in seX .

<1 andtllilm ku(t)k = 0, by Lemmal6, we have
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P
Proof: Consider a positive-de nite Lyapunov function candidsté) = % kxi(t)  Xok2,
i=1

1=
wherexy 2 X . Taking the derivative of functioW (t) with respect ta yields

xXo
\(t) = i (t)  Xo; xi(t)i
i=1
X X xXo
= aj (1) xi(t)  Xorx(t) xi(t) + Xi(t) Xo; i :
i=1 i2N; (1) i=1

(22)

P P

If G(t) is balanced, we havé L = 0. This implies that aj (t) xi(t)  Xo;x;(t)
i=1 i2N;j(t)

Xi (t) 0. The following proof is similar to Theorem 3 and hence it isited. [ ]

V. DISCRETETIME DISTRIBUTED ALGORITHMS FOR SOLVINGCFPs

In this section, for discrete-time MASI(2), the followingpiat is presented to solve CFB (3).

8 X
Ui(t) = h a;j (Xj (t) Xi(t)) + i(t)
i 2N;
FOEROIEA0
X
()= x@)+h gt x@) r () 12V (23)

j2N;i
)= M) Px (i)
=1 i(t)y "
wherer g (t) denotes the subgradient of functigh(y) aty = x;(t) + h_P aj (x; (1)  x(1),
h is the control gain to be designed. Note that each agent H&saonjezsti to the information
from its own inequality and set, as well as its own state amdr#iative states between itself
and its neighbors, thug (23) is distributed.

Assumption 5 g' () K forsomeK 0,i=1; ;n.

Lemma 10:Given a linear system(t + 1) = Ax(t) + u(t), if the state matrixA 2 R" " is
Schur stable and the control inpuft) 2 R" is such thattI!ilm u(t) = 0, then the linear system
is asymptotically stable to zero, i.etl!ilm x(t)=0.

Proof: It can be proved by the similar approach in Lemfa 8 and usiegfécst that
kI!ilm a '(A) ku()k =0 for 0< (A) < 1, which has been proved in [23]. |

1=0
The properties of graph's Laplacian matrix lead to the folltg lemmas directly([33].
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Lemma 11:For an undirected grap®(A), if G(A) is connected an@® < h < i then it
holdszmiaxnjl h i(L)j < L
Lemma 12:For a directed grap8®(A), if G(A) has a spanning tree afck h < 2miinn W
then it holdszmia>§j1 h (L)< 1
Proposition 3:SupposetI!i1m i(t) = 0 in (Z3), i 2 V, if the undirected grapltG(A) is
connected an@® < h < in then MAS [2) with [2B8) reaches consensus asymptotically.
Proof: Letx(t) = xI(t); ;xT(t) "and (t)= I(t); : T(t) ', MAS @) with (23)
can be rewritten as
Xt+1)=(1 hL) In)x@)+ (b): (24)
Denote variablex(t) = %.p Xi(t) = £ 17 1y X(t). Based on[(24), we have(t + 1) =
X(t) + u(t). Denoteeg (t) zl_)l(i(t) x(t) ande(t) = el(t); ;el(t) . Note that ife(t) ! 0
ast!1 , then MAS [2) with [2B8) reaches consensus asymptoticaityn=(24), we have

1

et+1)=(1 hL) I)et)y+ 1, ﬁ1n1§ lm (1): (25)
Since L is symmetric forG bein% undirected. \INe selegt 2 R" such thatp’L = (L)p'
and form an unitary matriP = #—ﬁ p2;  ;pn to transforml  hL into a diagonal form

diag(1; (3 h) »(L); ;@ h) o(L))= PT(l hL)P. Denotee(t) = PTe(t) and partition
g(t) into two parts , i.e.g(t) = [€] (t); €] (t)]". Then, from [25), we have

1 1
at+)=  p=ly I Sl Im (1)
1 1T 1 T — — T — P —
Note that »=1, In +141, Im =0 ande(t) = p= 1, Im &t)= = 1e:(t) =0.
1=
Thus, it holdsey(t) = 0. Moreover, we have
2 3
ap3 a1y

P Im
@a+n=~@m+§ 2(0
P %pﬁ 1,15 I'm
where = diag((1 h »(L)Im; ;@ h o(L)Iy). By Lemmall, we know iD< h < in
is Schur stable. Recalling Lemrhal 10 yie!ﬂsm &(t) = 0. This and the fact tha;l!lilm e(t)=0
imply tI!ilm e(t) = 0, which leads to the validity of this result. [ |
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Proposition 4: Supposetllilm i(t)y = 0 in @3), i 2 V, if the directed graphG(A) has
a spanning tree an@ < h < Zmiinnw, then MAS [2) with [2B) reaches consensus
asymptotically.

Proof: It can be proved by replacing the variabl¢t) in the proof of Proposition 3 with

R(t) de ned in the proof of Proposition 1, and using the fact trznnimr(]jl hi(L)j< 1if G
has a spanning tree afi h < min W which is stated in Lemma 2. n

Now we give the convergence condition for (2) with (23) arsl ptoof in detail when the
graph is directed.

Theorem 5:Under Assumptionis|1 arid 5, suppds€t)g, f (t)g are two sequences such that

P P
@ ()2[01], (@'l and 2)<1:

t=0 t=0

P P
(b)o (t) 1 , (t)!'1 and )< 1.
t=0 t=0 h
If the directed grapl(A) is strongly connected an@l< h < %, where%= min —1Fa'—;
I lmiaxn j:1 aij
2Re( (L))

1min T—OF Then, MAS [2) with [2B) reaches consensus asymptoticailigl, the consensus
I n !
state is in seX .

Proof: Since the graph is strongly connected, by Lenimha 2, therdseaisvectorw =

W,  wa]" > 0such thawL = 0. Submitting [2B) to[{2), we have
Xi(t+1)= i(t) "i{); 12V:

P
Consider the positive-de nite Lyapunov function candelat(t) = wikx;(t)  Xok?, where
i=1

Xo 2 X . Taking the difference of functiok (t) yields

V()= V(t+1) V(1)

xXn xn
= wik i(t) i(t)  xok® wikxi(t)  Xok?
i=1 i=1
= wik(l  O)C i) X))+ (O(Px, (i(t) xo)k?
i=1
xXn

wikxi(t)  Xok?
i=1

wi (1 ())ki(t) xok+ (HkPx, (i(t)) Xxok i

i=1
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X
wikxi(t)  Xok?
i=1
X X
wik i(t)  Xok? wikxi(t)  Xok?
i=1 i=1 (26)
= wkyi(t) xok® w; hr i (1);yi(t)  Xo
i=1 i=1
X X
+ wikr ; (t)k? wikxi(t)  Xo)k?
= i=1 i=1
wherey;(t) = xj(t) + h aj (x;(t)  x(t)) and the last inequality follows form using the

i 2N;
non-expansiveness property of projection operator, ki, ( i(t)) Xo)k k i(t) Xok. Since

r g’ (t) denotes the subgradient of functigh(y) aty = y;(t), we have

hr (0 yi(t) X Hg" (vi(t) o (27)

P
Moreover, sinced < h < —1Fn'—, we haveO< 1 h g < 1. By the convexity of the

max aj =1
1 i n j=1

norm square function, it holds

X X
kyi(t) Xok*=Kk(@ h  I)(xi(t) xo)+h Tt Xk

] 2N; J2N;
X X
(1 h lij )kXi(t) Xok2 +h Iij ka (t) X0k2:
j 2N i 2N;

Thus, we have

X X
wikyi(t)  Xok? Wil h o l)kxi(t)  Xok?
i=1 i=1 J2N;i
X0 X
+ h W, |ij ka (t) Xok2
=1 j2N;
X X X
Wi kXi (t) X0k2 h W, |ij kXi (t) X0k2 (28)
i=1 I i=1 J:1
XX '
+ h Wilij ka () Xok2

wikxi(t)  Xok?
i=1

July 3, 2021 DRAFT



21

P P
where the last equation results from the fact thatj =0 and  w;l; = 0. Submitting [(27)

j=1 =1
and [28) into[(Z2b) yields J |

X X
V(1) ) wig i)+  wikr j(t)k* (29)
i=1 i=1
Pl P
From (29), we haveV (t) V(0)+ 2()(w'1)K - V(0)+ 2(t)(w'1,)K < 1 . Bythe

de nition of V(t), it can be conclltjaoed that (t) is bounded. Bt;Othe fact thér j(t)k< 1 , we
know k i(t)k < 1 , this and the continuity oPx, ( i) imply k i(t) Px,(i(t))k < 1 . Thus,
tI!ilm "i(t) = 0. Since graphG(A) is strongly connected and < h < zmiinn ZTL(L)(FE from
Proposition 4, it can be concluded that MAS (2) with](23) re=c consensus asymptotically,
i.e., tI!ilm kxi(t) Xx;j(t)k =0 for all i;j 2 V. Moreover, similar to[(26), we have

V(t)

V(t+1) V(b

X X
wikyi(t) Xo r i(t) (K Wikxi(t)  Xo)k?

1 i=1

wikyi(t) Xo r i(t) (K Wikxi(t)  Xo)k?

xXo
wikyi(t)  Xok? 2 wihri(t)+ ' i(0);yi(t) Xol

i=1 i=1

xn
+ wikr (1) + (K wikxi(t)  Xo)k?
i=1

X

2 whri()+ " i);vit) X+ wikr (1) + (DK
i=1 i=1

X

wihri(t),yi(t) Xol 2 wih(t); i(t) Xoi
i=1 i=1
X

2 wih(t);r ()i + wikr (t) + ' (t)k?

i=1

1
N

1
fuy

xXo
wihri(t);yi(t) Xoi 2 wih(t); i(t) Xol

i=1 i=1

I
N

X
+ 0w kr(O)K2+ K (DK
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X . X ,
2 () wig (xi(1) 2 () wk (kg
0 i=1 i=1 (30)
+ w; kr i(t)k?+ k' (t)k?

i=1

. . : P P

where the rst mequallty results dlrectly fromh_(28). Notieat —ow (kr (K2 + k' (DK?) <

t=0 i=1

1 and 2 (t) w.gI (xi(t)) 2 (t) w; K -(t)k2 < 0. By Lemmal[b and the fact that

i=1

P
I|m Xi(t) = I|m X; (1), it can be concluded (t) converges and it holds (1) wg (x(t)+
t=0 i=1

(t)FIh wik i()k,) < 1. Since (t)g (xi(t)) > 0 and (t)k j(t)ki, > O for all t > 0

i=1

P P
andi =1; ;n, we have (g (x(t) < 1 and (tk i(t)k>2<i < 1 . By the facts
=0

P
(t'1 and t'!'1T ,we havellm inf k ;(t) Px (i(tHk= I|m inf g™ (xi(t))=0.
Thus there eX|sts a subsequehggty)g ofx (t) such thatllm Xi(tk) = X;, wherex; is a vector
such thag' (x;) = hi(x;) =0 for eachi =1; ;n. RecaII the fact thattlllm xi(t) = Itrlrln X; (1),

we havex; = x; for anyi;j 2 V. Letx = x;, we havekllilm Xi(ty) = x . By the fact

wikx;(t) xok® converges andlm xi(t) =0, we can concludgilm Xi(t) = L'.rln Xi(t) = x .
Furthermore note that ;(t) ! O ast !' 1 , thus tIlilm infk i(t) Px, (i(t)k = 0 and
tIlrlm Xi(t) = x imply tIlrlm kx  Px,(x)k=0 foranyi 2 V. This meansx 2 X =\, X
Therefore x is a feasible solution to CFP](3), i.ex, 2 X . [ |

Corollary 3: Under Assumptiongl1 anld 5, suppdse(t)g, f (t)g are two sequences such
that

P P
(@ (t) 2 [0;1], (t)!1 and )< 1 ;

t=0 t=0

P P
()0 t 1 , ()!'1 and 2M)y< 1.
t=0 t=0
If the graphG(A) is undirected and strongly connectélic h < ——2;—. Then, MAS [2)

max ajj
1 "j=1

with (23) reaches consensus asymptotically, and the censestate is in seX .

Proof: By Gersgorin Disc theorem, we can concluble< i if h< —2;—. Together

max a.J
1 n

with Lemmal1l, it can be proved by using the similar approacfieorem 5 and hence the

proof is omitted. [ |
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VI. A SPECIAL CASE A DISTRIBUTED GRADIENT-BASED ALGORITHM FORCFPs

INVOLVING LINEAR INEQUALITIES

In this section, we will develop a distributed gradientdxzhslgorithm for the CFP as follows.
S Ax b O
i=1; 'n (31)
X2 X =\ X
whereA; 2 R™ " andb2 R™. It assumes CFF_(B1) has a non-empty feasible solutioX set
For a vectory = [y;; ;ya]", we deney” =[y;; ;ya]" andy =[y;; y,]%,
wherey = max(y;; 0) andy, =min(y;;0). We introduce a function (y) = ky* k2. Note that
(y)=0 ifand only ify 0. The function (y) is convex and differentiable. See the following
lemma for detail.
Lemma 13:For any vectoly 2 R", the function (y) = ky*k? is convex, differentiable and
its gradient function at poing isr y (y)=2y".

Proof: . For any vectoz 2 R, we have (y+ z)= k(y+2)*k®>=ky+z (y+z) k?
ky+z (y) k¥ = ky* + zk? (y) + 2[y*]"z + kzk?, where the rst inequality follows
from the fact that(y + z) = argmin, ok(y+ z) vk. Moreover, it holds that (y + z) =
k(y+2) (y+2) K=k +[y +z (y+2) &  (W)+2[y'['z+ky +z (y+2) K

(y) + 2[y*]" z, where the rst inequality follows from the fact that it haldhat[y*]'y =0
and [y* 17 (y + 2) 0. Therefore, it holds tha!j!mow = 2[y*]" y. This means
ry (y)=2y". From the fact that (y + z) (y)+2[y*]"z, we know (y) is convex. W
Now we present the following distributed gradient-basegbathm for CFP [(311).

X
xi(t) = aj (x (1) xi(t)) AT (AXi()  h)"+xi(t) Px(xi() ; i=1; ;n

i2N;

(32)
where > 0is a positive coef cientx;(t) 2 R" represents the estimation value of the solutions
to CFP [(31).

Theorem 6:If the graphG(A) is strongly connected, thex(t) in (32) converges to a xed
vectorx asymptotically fori = 1; ;n andx is in feasible solution seX of (31).
Proof: By Lemma[13, it is not dif cult to prove that the ter@d (A;x; h)* is the gradient
of functionk(Aix; h)* k2. It can also be viewed as the unique subgradie(8fx; h)* k.

Then this result can be proved by the same method as Theorerd Besce it is omitted.
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VII. SIMULATIONS

In this section, we give numerical examples to illustrate tbtained results. Consider a
multi-agent system consisting of ve agents, the goal of éigents is to cooperatively search a
feasibility z =[z;;2z,]" of the CPF which includes two closed convex S¥ts= f(z;;2,)j2
Z1 40 2 29 and X, = f(z1;2)j25 Z1 45,1 2 39, and three linear
inequalitiesc(z) =2z, 3z, 2 0,d(z)=2z+3z 11 O0Oandg(z)=8z 3z, 28 O
In Fig.1, the yellow region represents the feasible regi®et X; is only known to agent
fori = 1;2, and agents 3, 4 and 5 can only have access(ay; d(z); g(z), respectively. In
the following, we will present simulation results in threases: The rst two cases are for
continuous-time distributed algorithms under the xed amde-varying graphs, respectively.
The third case is for the discrete-time distributed aldonitunder the xed graph. For each case,
the communication graph is directed.

We rst show the simulation result in the rst case. The conmmuation graph is shown in
Fig. [2, which is strongly connected. The weight of each edgenecting different agents is
1. Set coefcient = 20 and let the initial state of each agent kg(0) = [0;5]"; x»(0) =
[3; 2]";x3(0) =[2;3]";x4(0) =[5;1]";x5(0) =[2; 3]". The trajectory of MAS[{11) with[{11)
is shown in Fig[B. All agents also reach consensus at [2:58, 1:23]' which is a solution to
the CFP. This is consistent with the result established ieofém 3.

Now, we show the simulation result in the second case, theraamcation topologies switch
between two bidirectional subgraphs depicted in Eig. 4 &edstvitching law is given by Fidl5.
It is obvious that the graph associated with the time-varying graph is stronghneated. The
weight of each edge connecting different agents is alsogbgirSet coef cient = 35. Under
the same initial condition as the rst case, the trajectoryWidAS (I)) with (11) is shown in Fig.
6. All agents reach consensuszat= [2:61; 1:37] while remaining in the feasible region of the
CFP. This is consistent with the result established in Témo4.

In addition, we show the simulation result in the third caBee communication topology in
the rst case is used to conduct this simulation. Séf) = (t) = ﬁ andh = 0:25. Under
the same initial condition as the last two cases, the tmjgarf MAS (2) with (23) is shown
in Fig.[2. All agents reach consensuszat= [2:57; 1:54] which is a solution to the CFP. This

accords with the result established in Theorem 5.

July 3, 2021 DRAFT



25

(1) 22,32 ,2=0
at [©)] (2) 22,+32,-11=0
A ®3) 821—31 2—28:0

3r |

) ; X,

N2 I :

1) } X, ‘
0,
1 ‘ ‘ ‘ ‘

1 2 3 4 5 6 E  ——
Zl
Fig. 1. The feasible region of the CFP. Fig. 2. The communication graph in the rst case.

Agent 1

Agent 4

Agent 2

Fig. 3. The trajectory of the multi-agent system in the rstse. Symbol “*” represents the initial states of agents avhil’

represents the nal states of them.

VIII. CONCLUSIONS

In this paper, the CFPs have been studied for multi-agenesgsthrough local interactions.
The distributed control algorithms were designed for bathtmuous- and discrete-time systems,
respectively. In each case, a centralized approach wasntsiduced to solve the CFP. Then
distributed control algorithms were proposed based onubgradient and projection operations.
The conditions associated with connectivity of the comroation graph were given to ensure
convergence of the distributed algorithms. The resultsveldathat for the continuous-time case,

if the communication graph is xed and strongly connectdtk MAS can reach consensus
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0 (2)

Fig. 4. The communication graph in the second case, whickistnof two subgraphs. The left one is labeled 1 and the right

one is labeled 2.

Agent 3
2.5r
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15} ‘ R

14— | —

Agent 4

The switching law of time-varying graph

0.5}
Agent 2
0 -4 .
0 10 20 30 40 -1 0 1 2 3 4 5 6
t %
Fig. 5. The switching law of the time-varying graph. Fig. 6. The trajectory of the multi-agent system in the selcon

case. Symbol “*” represents the initial states of agentdevhi”

represents the nal states of them.

asymptotically and the consensus state is located in thei@olset of the CFP. Moreover, the
same result can be achieved if thegraph associated with a time-varying graph is strongly
connected. For the discrete-time case, under the condifistrong connectivity associated with
the directed graph, if the control gamand the step-sizes(t) and (t) are properly chosen,
convergence of the distributed algorithm can also be gteean Furthermore, a distributed
gradient-based algorithm has been designed for a speaalicavhich the CFP involves linear

inequalities. Finally, simulation examples have been ceotetl to demonstrate the effectiveness
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N
Agent 1 NN
~

Agent4 |

Fig. 7. The trajectory of the multi-agent system in the thiee. Symbol “*” represents the initial states of agentdevhi”

represents the nal states of them.

of our results. Our future work will focus on some other iesmg topics, such as the case
under quantization, time delays, packet loss and commtioicdandwidth constraints, which

will bring new challenges in solving CFPs over a network oématg.
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