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Distributed algorithms for solving a class of

convex feasibility problems

Kaihong Lu, Gangshan Jing, and Long Wang

Abstract

In this paper, a class of convex feasibility problems (CFPs)are studied for multi-agent systems

through local interactions. The objective is to search a feasible solution to the convex inequalities with

some set constraints in a distributed manner. The distributed control algorithms, involving subgradient

and projection, are proposed for both continuous- and discrete-time systems, respectively. Conditions

associated with connectivity of the directed communication graph are given to ensure convergence of the

algorithms. It is shown that under mild conditions, the states of all agents reach consensus asymptotically

and the consensus state is located in the solution set of the CFP. Simulation examples are presented to

demonstrate the effectiveness of the theoretical results.

Index Terms

Multi-agent systems; Consensus; Convex inequalities; Subgradient; Projection.

I. INTRODUCTION

Distributed coordination control of multi-agent systems (MASs) has been intensively inves-

tigated in various areas including engineering, natural science, and social science [1]-[3]. As a

fundamental coordination problem, the consensus which requires that a group of autonomous

agents achieve a common state has attracted much attention,see [4]-[11]. This is due to its
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wide applications in distributed control and estimation [12], distributed optimization [13]-[15]

and distributed methods for solving linear equations [16],[17].

Researches on consensus can be roughly categorized depending on whether the agents have

continuous- or discrete- time dynamics. Noticeable works focusing on the multi-agent systems

include [6], [9], [18], [19] for the continuous-time case and [5], [19]-[21] for the discrete-time

case. In the aforementioned works, the agents interact witheach other through a network and

each agent adjusts its own state by using only local information from its neighbors. Within this

framework, connectivity of the communication graph plays akey role in achieving consensus,

and consequently several conditions of the connectivity have been established. For example,

the communication graph must have a spanning tree when the topology is �xed [6], while the

union of the communication graphs should have a spanning tree frequently enough as the system

evolves when the topology is switching [9], [21]. In addition, in�nitely-joint connectedness, i.e.,

the in�nitely occurring communication graphs are jointly connected, is necessary to make the

agents reach consensus when the topology is time-varying [18], [19].

In recent years, the constrained consensus problem that seeks to reach state agreement in the

intersection of a number of convex sets has been widely investigated. In [22], a projection-based

consensus algorithm was proposed when the communication graph is balanced. This algorithm

with time delays was studied in [24], where the union of the communication graphs within a

period was assumed to be strongly connected. The problem wasextended to the continuous-time

case in [25], where each set serves as an optimal solution setof a local objective function,

and the global optimal solution is achieved as long as the intersection of the constrained sets is

computed. By taking the advantages of the property that the solution set of linear equations is an

af�ne set, the projection-based consensus algorithm in [25] was successfully applied to solving

linear equations in [26], where the projection operator in [25] was replaced with a special af�ne

projection operator. Unlike the distributed algorithm forsolving linear equations in [16], the

projection-based consensus algorithm in [26] does not needto restrict each agent's initial state

within the solution set of its corresponding equations. Themethods in [22]-[26] are useful for

the computation of the intersection when the projections onto the local sets are easily calculated.

However, in general, the application of the projected method usually requires the solution of an

auxiliary minimization problem associated with the projection onto the local set at each time.

This might lead to a limitation on its applications.
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Comparing with computing the intersection and solving linear equations, a more general

problem is solving CFPs, which usually needs to solve linearequations and convex inequalities

simultaneously, and ensure the solution to be in the intersection of some simple convex sets.

Applications of solving CFPs arise in different �elds, suchas pattern recognition [27], signal

processing [28] and image restoration [29], [30]. It is alsowell known that some convex

programming problems can be transformed into an equivalentCFP through the Karush-Kuhn-

Tucker condition [31]. For example, the linear program problem in [32] can be transformed into

a set of linear equations and inequalities. Inspired by the distributed methods for solving linear

equations [16], [26], distribute methods for CFPs will be studied in this paper. Different from

linear equations, the solution set of a CFP is usually not a simple af�ne set due to the existence

of inequalities which can even be nonlinear, thus it is necessary to develop alternative methods

for solving this problem.

In this paper, distributed algorithms, involving subgradient and projection, are proposed for

multi-agent systems to solve the CFP involving convex inequalities. Here the distributed control

algorithms are designed for the continuous- and the discrete-time systems, respectively. Our aim

is to obtain the graphic criteria for the convergence of these algorithms. One of the challenge

is that, the subgradient and projection operations lead to nonlinearity of the algorithms. To deal

with this problem, the control inputs are decomposed into a linear part involving the traditional

consensus term and a nonlinear part involving the subgradient and projection operations. The

linear part is analyzed by using the graph theory and some basic theories of stability associated

with linear systems, while the nonlinear part is done by Lyapunov theory. The contributions of

this paper are summarized as follows:

(1) Both continuous- and discrete-time distributed algorithms are provided for solving CFPs.

Different from the distributed algorithms for solving linear equations in [16], [17], in which the

algorithms need to restrict each agent's initial state within the solution set of its corresponding

equations, the CFPs can be solved by the presented algorithms under arbitrary initial states.

(2) The continuous-time distributed gradient-based algorithm has also been investigated in [36],

where convergence of the algorithm relies on a time-varyingparameter. Our algorithm does not

involve a time-varying parameter and it does not require theassumption on boundedness of the

subgradient as in [36]. We prove that, if the directed graph is �xed and strongly connected, all

agents' states will reach a common point asymptotically andthe point is located in the solution
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set of the CFP. Moreover, we �nd that the CFP can be solved if the � � graph associated with a

time-varying graph is strongly connected.

(3) Discrete-time distributed subgradient-based algorithms have been studied in [22], where the

communication graph is balanced. Unlike [22], [23], in our algorithm, only relative information

between the agents is required and the convergence can also be ensured when the communication

graph is unbalanced. We prove that the effectiveness of the presented algorithm can be guaranteed

when the directed graph is strongly connected.

This paper is organized as follows. In Section II, we presentsome notions in graph theory and

state the problem studied in this paper. In Section III, centralized algorithms in both continuous-

and discrete-time cases for the CFP are focused on and the convergence of them is analyzed. In

Section IV, the distributed control algorithm in continuous-time case is presented for the MAS to

solve the CFP, and the convergence is analyzed under both �xed and time-varying communication

graphs. The discrete-time case is studied in Section V. In Section VI, a distributed gradient-based

algorithm is designed for a CFP involving linear inequalities. Simulation examples are presented

in Section VII. Section VIII concludes the whole paper.

Notation: Throughout this paper, we usejaj to represent the absolute value of scalara. R

and C denote the set of real number and the set of complex number,respectively. LetRm be

the m-dimensional real vector space andCm be the complex one. For a given vectorx 2 Rm ,

x > 0(� 0) implies that each entry of vectorx is greater than (not less than) zero.kxk denotes

the standard Euclidean norm, i.e.,kxk =
p

xT x. For a functiong(�) : Rm ! R, we denote its

plus function byg+ (�) = max[ g(�); 0]. 1n denotes then-dimensional vector with elements being

all ones.I n denotes then � n identity matrix. The transposes of matrixA and vectorx are

denoted asAT andxT , respectively. For any two vectorsu andv, the operatorhu; vi denotes the

inner product ofu andv. For matricesA andB, the Kronecker product is denoted byA 
 B .

II. PRELIMINARY AND PROBLEM FORMULATION

A. Graph theory

The communication topology is denoted byG(A(t)) = ( V; E(t); A (t)) , V is a set of vertices,

E(t) � V � V is an edge set, and the weighted matrixA (t) = ( aij (t))n� n is a non-negative

matrix for adjacency weights of edges. If nodei can receive the information from nodej , then

nodej is called as nodei 's neighbor and it is denoted by(j; i ) 2 E(t) andaij (t) > 0. Otherwise,

July 3, 2021 DRAFT



5

aij (t) = 0 . DenoteN i (t) = f j 2 Vj (j; i ) 2 E(t)g to represent the neighbor set of nodei at time

t. The Laplacian matrix of the graph is de�ned asL(t) = ( l ij (t))n� n , wherel ij (t) = � aij (t) if

i 6= j and l ij (t) =
nP

j =1
aij (t) if i = j for any i = 1; � � � ; n. For a �xed and directed graphG(A),

a path of lengthr from nodei1 to nodei r +1 is a sequence ofr + 1 distinct nodesi1 � � � ; i r +1

such that(iq; iq+1 ) 2 E for q = 1; � � � ; r . If there exists a path between any two nodes inV,

thenG(A) is said to be strongly connected. A directed graph, where every node has exactly one

neighbor except the root, is said to be a directed tree. A spanning tree of a directed graph is a

directed tree formed by graph edges that connect all the nodes of the graph [33]. We say that a

graph has a spanning tree if a subset of the edges forms a spanning tree.

For a time-varying and directed graphG(A(t)) , (j; i ) is called a� � edge if there always exist

two positive constantsT and� such that
Rt+ T

t aij (s)ds � � for any t � 0. A � � graph, induced

by G(A(t)) , is de�ned asG(�;T ) = ( V; E(�;T )), whereE(�;T ) =
�

(j; i ) 2 V � Vj
Rt+ T

t aij (s)ds �

� for any t � 0
	

. The communication graphG(A(t)) is said to be balanced if the sum of the

interaction weights from and to an agenti are equal, i.e.,
nP

j =1
aij (t) =

nP

j =1
aj i (t).

Lemma 1: [5] For a �xed graphG(A), if G(A ) has a spanning tree, then the Laplacian matrix

L has one simple 0 eigenvalue and the other eigenvalues have positive real parts.

Lemma 2: [6] For a �xed graph G(A), if G(A ) is strongly connected, then there exists a

vectorw = [ w1 � � � wn ]T > 0 such thatwT L = 0.

For ease of description, ifG(A ) has a spanning tree, we use� 1(L) to represent the 0 eigenvalue

and � i (L); i = 2; � � � ; n to represent other non-zero eigenvalues.

B. Convex analysis

A function f (�) : Rm ! R is convex if it holdsf (
x + (1 � 
 )y) � 
f (x) + (1 � 
 )f (y) for

anyx 6= y 2 Rm and0 < 
 < 1. For convex functionf (x), if h r f (x); y � x i � f (y) � f (x)

holds for anyy 2 Rm , thenr f (x) is a subgradient of functionf at pointx 2 Rm . There must

exist subgradients for any convex function. Furthermore, if the convex function is differentiable,

its gradient is the unique subgradient.

Given a set
 � Rm , it is called as a convex set if
x +(1 � 
 )y 2 
 for any scalar0 < 
 < 1

andx; y 2 
 . For a closed convex set
 , let kxk

�= inf y2 
 kx � yk denote the standard Euclidean

distance of vectorx 2 Rm from 
 . Then, there is a unique elementP
 (x) 2 
 such that
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kx � P
 (x)k = kxk
 , whereP
 (�) is called the projection onto the set
 [34]. Moreover,P
 (�)

has the non-expansiveness property:kP
 (x) � P
 (y)k � k x � yk for any x; y 2 Rm .

Lemma 3:For a convex functiong(�) : Rm ! R, suppose the setX = f x 2 Rm jg+ (x) = 0 g

is non-empty, it holdsz 2 X if and only if 0 is a subgradient of the plus functiong+ at pointz.

Proof: Suf�ciency. By the de�nition of g+ (�), we know functiong+ (�) is convex. Therefore,

the subgradient of functiong+ (�) always exists. If 0 is a subgradient of the plus functiong+ at

point z, by the de�nition of the subgradient, we haveg+ (y) � g+ (z) � 0T (y � z) = 0 for any

y 2 Rm . Let y 2 X , then we have� g+ (z) � 0. By this and the fact thatg+ (z) � 0, it can be

concluded thatg+ (z) = 0 .

Necessity. If z 2 X , we haveg+ (z) = 0 . Due to the fact thatg+ (y) � 0, we haveg+ (y) � 0 �

0T (y � z) for any y 2 Rm . Thus, 0 is a subgradient of the plus functiong+ at pointz.

Lemma 4: [22] Given a closed convex set
 � Rm , it holds

hP
 (x) � x; x � yi � �k xk2



for any x 2 Rm ; y 2 
 .

C. Problem formulation

Consider a MAS consisting ofn agents, labeled by setV = f 1; � � � ; ng. Here we consider

agents with both continuous-time dynamics

_x i (t) = ui (t); i 2 V (1)

and discrete-time dynamics

x i (t + 1) = x i (t) + ui (t); i 2 V (2)

wherex i (t) 2 Rm andui (t) 2 Rm are respectively, the state and input of agenti . The objectives

of this paper are to designui (t) for (1) and (2) by using only local information to solve the

following CFP: 8
<

:

gi (x) � 0

x 2 X :
�= \ n

i =1 X i

i = 1; � � � ; n (3)

where x 2 Rm , gi (�) : Rm ! R is a convex function, it is continuous on(�1 ; 1 ). Each

X i is a closed convex set. Agenti can only have access to the information associated with
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subgradientr g+
i (�) and projectionPX i (�). We assume eachr g+

i (�) is piecewise continuous for

any i = 1; � � � ; n.

Remark 1:Note that if and only ifx 2 X i , it holds x = PX i (x). If x = PX i (x) for all

i = 1; � � � ; n, thenx belongs to their intersection. Since the algorithms in the following sections

refer to the projection operatorPX i (�), here we only consider some convex setsX i onto which

the projectionPX i (x) can be easily calculated or their expressions could be givenin detail at any

point x. For example, if setX represents the solution set of linear equationaT x� b = 0, i.e.,X =

f xjaT x � b= 0g, wherea; x 2 Rm ; b2 R, it is easy to show thatPX (x) =
�

I � aaT

kak2

�
x + ba

kak2

is a projection ofx onto setX . Consequently, it is not dif�cult to �nd that the algorithmsin the

following sections are also available to the CFP involving linear equations.

The solution set of CFP (3) is denoted byX � and the following assumption is adopted throughout

the paper.

Assumption 1:X � is non-empty.

Note that a vectorx � belongs toX � , if and only if it holds thatx � 2 X and g+
i (x � ) = 0 for

eachi 2 f 1; � � � ; ng.

III. CENTRALIZED ALGORITHMS FOR CFPS

In this section, we focus on the following CFP
8
<

:

g(x) � 0

x 2 X
(4)

wherex 2 Rm , g(�) : Rm ! R is a convex function, andX is a closed convex set.

A. Continuous-time case

To solve CFP (4), the following continuous-time subgradient and projection-based algorithm

is proposed.

_x(t) = � � (t)[x(t) � PX (x(t))] � � (t)r g+ (x(t)) (5)

where� (t),� (t) 2 R.

Theorem 1:Suppose CFP (4) has a non-empty solution setX � , if � (t) � 0 and � (t) � 0

satisfy that
R1

0 � (t) ! 1 and
R1

0 � (t) ! 1 , thenx(t) in (5) converges to a vectorx � in set

X � .
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Proof: De�ne a positive-de�nite Lyapunov function candidateV(t) = 1
2kx(t) � x0k2, where

x0 2 X � . By the de�nition of g+ , it holds g+ (x0) = kx0kX = 0. Based on the property of the

subgradient, we havehx(t) � x0; r g+ (x(t)) i � g+ (x(t)) . Taking the derivative of functionV(t)

with respect tot yields

_V(t) = hx(t) � x0; _x(t)i

=


x(t) � x0; � � (t)[x(t) � PX (x(t))] � � (t)r g+ (x(t))

�

= � � (t) hx(t) � x0; x(t) � PX (x(t)) i � � (t)hx(t) � x0; r g+ (x(t)) i

� � � (t) hx(t) � x0; x(t) � PX (x(t)) i � � (t)g+ (x(t)) :

(6)

By Lemma 4, we know� h x(t) � x0; x(t) � PX (x(t)) i � �k x(t)k2
X � 0. Note thatg+ (x(t)) �

0. Thus, _V(t) � 0. Moreover,V(t) is bounded by zero, it can be concluded thatV(t) converges

andV(1 ) exists, which implieskx(t) � x0k converges. By inequality (6), we have
Z 1

0
� (t) kx(t)k2

X dt +
Z 1

0
� (t)g+ (x(t))dt � V (0) � V(1 ) < 1 :

Since � (t) kx(t)k2
X and � (t)g+ (x(t)) are both non-negative, then we have

R1
0 � (t) kx(t)k2

X

dt < 1 and
R1

0 � (t)g+ (x(t))dt < 1 . These and the facts
R1

0 � (t) ! 1 and
R1

0 � (t) ! 1

imply lim
t !1

inf kx(t) � PX (x(t))k = lim
t !1

inf g+ (x(t)) = 0 . Thus, there exists a subsequence

f x(tk)g of x(t) such that lim
k!1

x(tk ) = lim
t !1

inf x(t) = x � , wherex � is a point in the solution set

of CFP (4). Moreover, note thatV(x(t)) converges, it can be concluded thatlim
t !1

x(t) = x � 2 X.

Hence, the validity of the result is veri�ed.

Corollary 1: Suppose CFP (4) has a non-empty solution setX � , if x(t) adjusts its value with

the following dynamics

_x(t) = � [x(t) � PX (x(t))] � r g+ (x(t))

thenx(t) converges to a vectorx � in setX � .

B. Discrete-time case

Now we present the discrete-time algorithm for CFP (4).
8
>>><

>>>:

� (t) = x(t) � � (t)r g+ (x(t))

' (t) = � (t) (� (t) � PX (� (t)))

x(t + 1) = � (t) � ' (t)

(7)
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wherePX (�) and r g+ (x(t)) are de�ned as those in (5).

Assumption 2:r g+ (x(t)) � K for someK � 0.

Lemma 5: [35] Let f z(t)g be a non-negative scalar sequence such that

z(t + 1) � (1 + a(t))z(t) � b(t) + c(t)

for all t � 0, if a(t) � 0; b(t) � 0; c(t) � 0 with
1P

t=0
a(t) < 1 and

1P

t=0
c(t) < 1 , then the

sequencef z(t)g converges to some constantz� and
1P

t=0
b(t) < 1 .

Theorem 2:Under Assumptions 2, if CFP (4) has a non-empty solution setX � , and � (t) ,

� (t) satisfy

(a) � (t) 2 [0; 1],
1P

t=0
� (t) ! 1 and

1P

t=0
� 2(t) < 1 ;

(b) 0 � � (t) � 1 ,
1P

t=0
� (t) ! 1 and

1P

t=0
� 2(t) < 1 .

Then,x(t) in (7) converges to a vectorx � in setX � .

Proof: We choose the Lyapunov function candidate asV(t) = kx(t) � x0k2, wherex0 2 X � .

Taking the difference of functionV(t) along with (7) yields

� V(t) = V(t + 1) � V (t)

= k� (t) � ' (t) � x0k2 � k x(t) � x0k2

= k(1 � � (t))( � (t) � x0) + � (t)(PX (� (t)) � x0)k2 � k x(t) � x0k2

�
�

(1 � � (t))k� (t) � x0k + � (t)kPX (� (t)) � x0k
� 2

� k x(t) � x0k2

� k � (t) � x0k2 � k x(t) � x0k2

(8)

where the last inequality follows from the non-expansiveness property of projection operator,

i.e., kPX (� (t)) � x0)k � k � (t) � x0k. Moreover, we have

k� (t) � x0k2 � k x(t) � x0k2 � 2� (t)hr g+ (x(t)) ; x(t) � x0i

+ � 2(t)K

� k x(t) � x0k2 � 2� (t)
�
g+ (x(t)) � g+ (x0)

�

+ � 2(t)K:

(9)

From inequalities(8) and (9), we have� V(t) � � 2(t)K . Thus, it holds thatV(t) � V(0) +
t � 1P

t=0
� 2(t)K � V(0) +

1P

t=0
� 2(t)K < 1 . By the de�nition of V(t), it can be concluded that

x(t) is bounded. Sincek� (t)r g+ (x(t)) k < 1 , � (t) is bounded. This and the continuity of

July 3, 2021 DRAFT
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PX (� (t)) imply k� (t) � PX (� (t))k < 1 . Denoter (t) = � (t)r g+ (x(t)) , since
1P

t=0
� 2(t) < 1

and
1P

t=0
� 2(t) < 1 , it can be concluded that

1P

t=0
kr (t)k2 < 1 and

1P

t=0
k' (t)k2 < 1 . Similar to

(8), we also have

� V(t) = V(t + 1) � V (t)

= � 2hr (t) + ' (t); x(t) � x0i + kr (t) + ' (t)k2

= � 2hr (t); x(t) � x0i � 2h' (t); � (t) � x0i

� 2h' (t); r (t)i + kr (t) + ' (t)k2

= � 2hr (t); x(t) � x0i � 2h' (t); � (t) � x0i + kr (t)k2 + k' (t)k2

� � 2� (t)g+ (x(t)) � 2� (t)k� (t)k2
X + kr (t)k2 + k' (t)k2

= � 2� (t)g+ (x(t)) � 2� (t)k� (t)k2
X + kr (t)k2 + k' (t)k2:

(10)

Recall the fact that
1P

t=0
kr (t)k2 + k' (t)k2 < 1 and � 2� (t)g+ (x(t)) � 2� (t)k� (t)k2

X < 0,

by Lemma 5, it can be concludedkx(t) � x0k converges and it holds
1P

t=0

�
� (t)g+ (x(t)) +

� (t)k� (t)k2
X

�
< 1 . Since � (t)g+ (x(t)) > 0 and � (t)k� (t)k2

X > 0 for all t > 0, we have
1P

t=0
� (t)g+ (x(t)) < 1 and

1P

t=0
� (t)k� (t)k2

X < 1 . By the facts
1P

t=0
� (t) ! 1 and

1P

t=0
� (t) ! 1 ,

we have lim
t !1

inf k� (t) � PX (� (t))k = lim
t !1

inf g+ (x(t)) = 0 . Thus, there exists a subsequence

f x(tk)g of x(t) such that lim
k!1

x(tk) = x � , wherex � is a vector such thatg+ (x � ) = 0 . By the

fact kx(t) � x0k converges, we can concludelim
t !1

x(t) = x � . Furthermore, note thatr (t) ! 0 as

t ! 1 , thus lim
t !1

inf k� (t) � PX (� (t))k = 0 and lim
t !1

x(t) = x � imply lim
t !1

kx � � PX (x � )k = 0.

Therefore,x � is a solution to CFP (4), i.e.,x � 2 X � .

IV. CONTINUOUS-TIME DISTRIBUTED CONTROL ALGORITHMS FOR SOLVINGCFPS

In this section, we focus on solving CFP (3) for continuous-time MAS (1) in a distributed

manner, which means that each agent has access to only its ownstate and that from its neighbors.

The following input is proposed.
8
>><

>>:

ui (t) =
X

i 2 N i (t )

aij (t)(x j (t) � x i (t)) + � i (t)

� i (t) = � �
�
[x i (t) � PX i (x i (t))] + r g+

i (x i (t))
�

i 2 V (11)
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where � is a positive coef�cient. Note that� i depends on only agenti 's own state, so (11)

is distributed. Based on Lemma 3 in Section II, here we setr g+
i (x) = 0 if gi (x) � 0 and

r g+
i (x) = r gi (x) otherwise.

Remark 2: If we set � = 0 in algorithm (11), then it will become a typical linear consensus

algorithm for MASs studied in [5], [6]. In this case, MASs reach consensus asymptotically

if the communication graph is �xed and has a spanning tree. The distributed subgradient-

based algorithm was studied for continuous-time multi-agent systems to optimize a sum of

convex objective functions in [36], but the convergence of the algorithm relies on a time-varying

parameter and the projection term was not involved.

Let x(t) =
�
xT

1 (t); � � � ; xT
n (t)

� T
and � (t) =

�
� T

1 (t); � � � ; � T
n (t)

� T
, MAS (1) with (11) can be

rewritten as

_x(t) = � (L(t) 
 I m ) x(t) + � (t): (12)

Lemma 6: [37] Let b(t) be a bounded function, iflim
t !1

b(t) = b and 0 < 
 < 1, then

lim
t !1

Rt
0 
 t � sb(s) ds = � b

ln
 .

Lemma 7: [38] Given a symmetric matrixP = ( pij )n� n with 0 eigenvalue and a vector

x = [ x1; � � � ; xn ]T , if P1n = 0, then it holdsxT P x = �
nP

i =1

nP

j = i +1
pij (x i � x j )2.

Lemma 8:Given a linear system_x(t) = Ax(t) + u(t), if the state matrixA 2 Rn� n is

Hurwitz stable andu(t) 2 Rn satis�es ku(t)k < 1 and lim
t !1

u(t) = 0 , then the linear system is

asymptotically stable to zero, i.e.,lim
t !1

x(t) = 0 .

Proof: Since matrixA is Hurwitz stable, all of its eigenvalues have negative realparts.

Based on theory of Schur's unitary triangularization, there exists a unitary matrixU 2 Cn� n

such that

UH AU =

2

6
6
6
6
6
4

� 1 � 12 � � � � 1n

0 � 2 � 23 � 2n

...
...

...
...

0 0 0 � n

3

7
7
7
7
7
5

�= �

where � i is the eigenvalue of matrixA, i = 1; � � � ; n; UH is the conjugate transpose matrix

of U. Denotey(t) = UH x(t) and r (t) = UH u(t), we have _y(t) = � y(t) + r (t). By the

fact that lim
t !1

u(t) = 0 , we have lim
t !1

r (t) = 0 . Let y(t) = [ y1(t); � � � ; yn(t)]T and r (t) =
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[r1(t); � � � ; rn(t)]T , we have_yn (t) = � nyn (t)+ rn(t). The termrn (t) can be viewed as an control

input of the linear system and we haveyn (t) = e� n tyn (0)+
Rt

0 e� n (t � � )rn (� )d� . Since the real part

of � n is negative, it holds0 < e � n < 1. By Lemma 6, it can be concluded thatlim
t !1

yn (t) = 0 .

Since _yi (t) = � i yi (t) +
� nP

j =1
� i (i + j )yi + j (t) + r i (t)

�
. Through the similar approach foryn (t), we

can concludelim
t !1

 
nP

j =1
� i (i + j )yi + j (t) + r i (t)

!

= 0. Reusing Lemma 6 yieldslim
t !1

yi (t) = 0 for

any i = 1; � � � ; n. This and the factx(t) = Uy(t) imply lim
t !1

x(t) = 0 .

To prove the fact that MAS (1) with (11) solves CFP (3), it is necessary to analyze the

convergence of MAS (1) with (11). Obviously, the conditionsfor convergence depend on the

connectivity of the graphs. In the following, we will provide the convergence conditions under

the �xed graph and the time-varying graph, respectively.

A. Convergence under the �xed communication graph

Proposition 1: Supposek� i (t)k < 1 and lim
t !1

� i (t) = 0 in (11), i 2 V , if the �xed

graph G(A) is directed and has a spanning tree, then MAS (1) with (11) reaches consensus

asymptotically.

Proof: De�ne a variablex̂(t) =
nP

i =1

wi x i (t )
nP

i =1
wi

=
�

wT

1T w

 I m

�
x(t), wherew = [ w1 � � � wn ]T is

L 's left eigenvector associated with 0 eigenvalue. Based on (12), we have_̂x(t) = (wT 
 I m )
1T w

u(t).

Denoteei (t) = x i (t) � x̂(t) and e(t) =
�
eT

1 (t); � � � ; eT
n (t)

� T
. Note that if lim

t !1
e(t) = 0 , then

MAS (1) with (11) reaches consensus. From (12), we have

_e(t) = � (L 
 I m )x(t) +
��

I n �
1nwT

1T
n w

�

 I m

�
� (t)

= � (L 
 I m )x(t) + ( L 
 I m )
�

1nwT

1T
n w


 I m

�
x(t)

+
��

I n �
1nwT

1T
n w

�

 I m

�
� (t)

= � (L 
 I m )e(t) +
��

I n �
1nwT

1T
n w

�

 I m

�
� (t)

(13)

where the second equation holds for the fact thatL1n = 0. Note that 1p
wT w

LT w = 0. Now we

use 1p
wT w

w to form a set of orthonormal basis on2 Cn , denoted by 1p
wT w

w; p2; � � � ; pn . We

de�ne P = ( 1p
wT w

w; p2; � � � ; pn). It is obvious thatP is a unitary matrix, so we can denote
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PT LP =

2

6
6
6
6
6
6
4

0 j 0 � � � 0

�
...

�

�
�
�
�
�
�
�
�
�

L1

3

7
7
7
7
7
7
5

:

SinceG(A) has a spanning tree, by Lemma 1,L has only one 0 eigenvalue and other eigenvalues

have positive real part. This implies� L1 is Hurwitz stable. Now de�ne~e(t) = ( PT 
 I m )e(t).

From (13), we have

_~e(t) = � (PT LP 
 I m )~e(t) +
��

PT �
PT 1nwT

1T
n w

�

 I m

�
� (t): (14)

Let ~e(t) = [~eT
1 (t); ~eT

2 (t)]T , where~e1(t) 2 Rm and ~e2(t) 2 R(n� 1)m . By (14), we have

_~e1(t) =

  
1

p
wT w

wT �
1p

wT w
wT 1nwT

1T
n w

!


 I m

!

� (t) = 0 :

Note that~e1(t) = 1p
wT w

(wT 
 I m )e(t) = 1p
wT w

(wT 
 I m )
��

I n � 1n wT

1T
n w

�

 I m

�
x(t) = 0 . Thus,

it holds ~e1(t) = 0 for any t � 0. Moreover, we have

_~e2 = � (L1 
 I m ) ~e2 +

2

6
6
6
4

�
pT

2 � pT
2 1n wT

1T
n w

�

 I m

...
�

pT
n � pT

n 1n wT

1T
n w

�

 I m

3

7
7
7
5

� (t):

Since lim
t !1

� (t) = 0 , by Lemma 8, we havelim
t !1

~e2(t) = 0 . This and the fact thatlim
t !1

~e1(t) = 0

imply lim
t !1

e(t) = 0 . This leads to the validity of this result.

Theorem 3:If the �xed graph G(A) is directed and strongly connected, then MAS (1) with

(11) reaches consensus asymptotically, and the consensus state is located in setX � .

Proof: Since the graph is strongly connected, by Lemma 2, there exists a vectorw =

[w1 � � � wn ]T > 0 such thatwT L = 0. Consider a positive-de�nite Lyapunov function candidate

V(t) = 1
2

nP

i =1
wi kx i (t) � x0k2, wherex0 2 X � . By the de�nition of g+

i , it holdsg+ (x0) = kx0kX =

0. Based on the property of subgradient, we have


x i (t) � x0; r g+

i (x i (t))
�

� g+
i (x i (t)) . Taking
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the derivative of functionV(t) with respect tot yields

_V(t) =
nX

i =1

wi hx i (t) � x0; _x i (t)i

=
nX

i =1

wi



x i (t) � x0;

X

i 2 N i (t )

aij (t)(x j (t) � x i (t)) � � [x i (t)

� PX i (x i (t))] � � r g+
i (x i (t))

�

=
nX

i =1

X

i 2 N i (t )

wi aij hx i (t) � x0; x j (t) � x i (t)i

� �
nX

i =1

wi hx i (t) � x0; x(t) � PX i (x i (t)) i

� �
nX

i =1

wi


x i (t) � x0; r g+

i (x i (t))
�

:

(15)

Denotex(t) =
�
xT

1 (t); � � � ; xT
n (t)

� T
, we have

nX

i =1

X

i 2 N i (t )

wi aij hx i (t) � x0; x j (t) � x i (t)i = � (x(t) � (1n 
 I m ) x0)T (W L 
 I m ) x(t)

= � xT (t)
�

W L + LT W
2


 I m

�
x(t)

+ xT
0

�
wT L 
 I m

�
x(t)

= xT (t)
�

W(� L) + ( � L)T W
2


 I m

�
x(t)

= �
nX

i =1

nX

j = i +1

wi aij + wj aj i

2
kx j (t) � x i (t)k

2

� 0

(16)

whereW = diag(w) is a diagonal matrix formed byw and the last equation results from Lemma

7. By Lemma 4, we know� h x i (t) � x0; x i (t) � PX i (x i (t)) i � �k x i (t)k2
X i

� 0. Based on (15)

and (16), we have

_V(t) � � �
nX

i =1

wi kx i (t)k
2
X i

� �
nX

i =1

wi g+
i (x i (t)) : (17)

Note that g+
i (x i (t)) � 0. Thus, _V(t) � 0. Moreover, V(t) is bounded by zero, it can be

concluded thatV(t) converges andV(1 ) exists, which implieskx i (t) � x0k converges and
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kx i (t)k is bounded. By (17), we have

�
Z 1

0

nX

i =1

wi kx i (t)k
2
X i

dt + �
Z 1

0

nX

i =1

wi g+
i (x i (t))dt

� V (0) � V(1 )

< 1 :

Thus, it holds
R1

0 kx i (t)k
2
X i

dt < 1 and
R1

0 g+
i (x i (t))dt < 1 . These implylim t !1




 x i (t)

� PX i (x i (t))



 = lim t !1 g+

i (x i (t)) = 0 for eachi 2 V . By the de�nition of the subgradient

r g+
i (�), we can concludelim

t !1
� i (t) = 0 for i 2 V . By the continuity ofg+

i (x i (t)) and the

boundedness ofkx i (t)k, it can be concluded� i (t) is bounded. Recall Proposition 1, we know

MAS (1) with (11) reaches consensus asymptotically, denotex � as the consensus state, i.e.,

lim
t !1

x i (t) = x � for eachi 2 V . Therefore,x � 2 X� . The validity of this result is veri�ed.

Remark 3:The strongly connected condition proposed in Theorem 3 is suf�cient to solve

CFP (3). In fact, it is also necessary in many cases. Now we setan example to illustrate that the

CFP can not be solved by the MAS if the graph is not strongly connected. Suppose graphG is

not strongly connected, then there exists at least one strongly connected component that can not

receive information from others. We denote the set consisting of all agents in this component

by V1. Suppose that all agents inV1 are constrained by inequalityx � 0. If we setx i (0) = 0

for eachi 2 V1, then it holdsx i (t) = 0 for any t > 0 andi 2 V1. In another strongly connected

component, if there exists one agent that is constrained by inequalityx � � 1, it is easy to see

that the CFP can never be solved under such a graph.

If communication graphG(A) is bidirectional andaij = aj i for eachi 2 V , G(A ) becomes

an undirected graph. For the undirected case, we state the result as follows.

Corollary 2: If the �xed graph G(A) is undirected and connected, then MAS (1) with (11)

reaches consensus asymptotically, and the consensus stateis in setX � .

B. Convergence under the time-varying communication graph

For system (12), by the properties of linear systems [39], the solution of system (12) can be

written as follows.

x(t) = (�( t; s) 
 I m ) x(s) +
Z t

s
(�( t; � ) 
 I m ) u(� )d� (18)

July 3, 2021 DRAFT



16

where�( t; s) 
 I m is the state-transition matrix from statex(s) to statex(t) with t � s � 0.

Now, for time-varying graphG(t), the following assumptions are given.

Assumption 3:The communication graphG(t) is balanced.

Assumption 4:The � � digraphG(�;T ) is strongly connected.

Lemma 9: [37] Under Assumptions 3 and 4, for anyt � s � 0, �( t; s) in (18) satis�es the

following inequality
�
�
�
� [�( t; s)] ij �

1
n

�
�
�
� � 
 t � s; i; j 2 f 1; � � � ; ng (19)

where
 =
�

1 � 1
(8n2 )bn= 2c

� 1
( b1=� c+1) bn= 2cT

, the operatorbxc denotes the largest integer not larger

than the value ofx.

Proposition 2: Under Assumptions 3 and 4, ifk� i (t)k < 1 and lim
t !1

� i (t) = 0 in (11), i 2 V ,

then MAS (1) with (11) reaches consensus asymptotically.

Proof: Since G(t) is balanced, by Peano-Baker formula (see [39] for detail), it can be

concluded that�( t; s) is a double stochastic matrix. Denote�x(t) = 1
n

nP

i =1
x i (t), by (18), we have

�x(t) =
1
n

�
1T

n 
 I m

�
x(s) +

1
n

Z t

s

�
1T

n 
 I m

�
u(� )d� : (20)

Based on (18) and (20), we have

x(t) �
1
n

(1n 
 I m ) �x(t) =
��

�( t; 0) �
1
n

1n1T
n

�

 I m

�
x(0)

+
Z t

s

��
�( t; � ) �

1
n

1n1T
n

�

 I m

�
u(� )d� :

(21)

Applying (19) in Lemma 9 to equation (21) yields







 x(t) �

1
n

(1n 
 I m ) �x(t)








 �

p
mn
 t kx(0)k +

p
mn

Z t

s

 t � � ku(� )kd� :

Since0 < 
 =
�

1 � 1
(8n2)bn= 2c

� 1
( b1=� c+1) bn= 2cT

< 1 and lim
t !1

ku(t)k = 0, by Lemma 6, we have

lim
t !1




 x(t) � 1

n (1n 
 I m ) �x(t)



 = 0. This leads to the validity of this result.

Theorem 4:Under Assumptions 1, 3 and 4, iflim
t !1

� i (t) = 0 in (11), i 2 V , then MAS (1)

with (11) reaches consensus asymptotically, and the consensus state is in setX � .
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Proof: Consider a positive-de�nite Lyapunov function candidateV(t) = 1
2

nP

i =1
kx i (t) � x0k2,

wherex0 2 X � . Taking the derivative of functionV(t) with respect tot yields

_V(t) =
nX

i =1

hx i (t) � x0; _x i (t)i

=
nX

i =1

X

i 2 N i (t )

aij (t)


x i (t) � x0; x j (t) � x i (t)

�
+

nX

i =1



x i (t) � x0; � i

�
:

(22)

If G(t) is balanced, we have1T
n L = 0. This implies that

nP

i =1

P

i 2 N i (t )
aij (t)



x i (t) � x0; x j (t) �

x i (t)
�

� 0. The following proof is similar to Theorem 3 and hence it is omitted.

V. D ISCRETE-TIME DISTRIBUTED ALGORITHMS FOR SOLVINGCFPS

In this section, for discrete-time MAS (2), the following input is presented to solve CFP (3).
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ui (t) = h
X

j 2 N i

aij (x j (t) � x i (t)) + � i (t)

r i (t) = � (t)r g+
i (t)

� i (t) = x i (t) + h
X

j 2 N i

aij (x j (t) � x i (t)) � r i (t)

' i (t) = � (t) (� i (t) � PX i (� i (t)))

� i (t) = �r i (t) � ' i (t)

i 2 V (23)

wherer g+
i (t) denotes the subgradient of functiong+

i (y) at y = x i (t) + h
P

j 2 N i

aij (x j (t) � x i (t)) ,

h is the control gain to be designed. Note that each agent has only access to the information

from its own inequality and set, as well as its own state and the relative states between itself

and its neighbors, thus (23) is distributed.

Assumption 5:r g+
i (�) � K for someK � 0, i = 1; � � � ; n.

Lemma 10:Given a linear systemx(t + 1) = Ax(t) + u(t), if the state matrixA 2 Rn� n is

Schur stable and the control inputu(t) 2 Rn is such thatlim
t !1

u(t) = 0 , then the linear system

is asymptotically stable to zero, i.e.,lim
t !1

x(t) = 0 .

Proof: It can be proved by the similar approach in Lemma 8 and using the fact that

lim
k!1

kP

l=0
� k� l (A) ku(l)k = 0 for 0 < � (A) < 1, which has been proved in [23].

The properties of graph's Laplacian matrix lead to the following lemmas directly [33].
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Lemma 11:For an undirected graphG(A), if G(A ) is connected and0 < h < 2
� n

, then it

holds max
2� i � n

j1 � h� i (L)j < 1.

Lemma 12:For a directed graphG(A), if G(A ) has a spanning tree and0 < h < min
2� i � n

2Re(� i (L ))
j� i (L )j2

,

then it holdsmax
2� i � n

j1 � h� i (L)j < 1.

Proposition 3: Supposelim
t !1

� i (t) = 0 in (23), i 2 V , if the undirected graphG(A) is

connected and0 < h < 2
� n

, then MAS (2) with (23) reaches consensus asymptotically.

Proof: Let x(t) =
�
xT

1 (t); � � � ; xT
n (t)

� T
and� (t) =

�
� T

1 (t); � � � ; � T
n (t)

� T
, MAS (2) with (23)

can be rewritten as

x(t + 1) = (( I � hL) 
 I m ) x(t) + � (t): (24)

Denote variable�x(t) = 1
n

nP

i =1
x i (t) = 1

n

�
1T

n 
 I m

�
x(t). Based on (24), we have�x(t + 1) =

�x(t) + u(t). Denoteei (t) = x i (t) � �x(t) and e(t) =
�
eT

1 (t); � � � ; eT
n (t)

� T
. Note that ife(t) ! 0

as t ! 1 , then MAS (2) with (23) reaches consensus asymptotically. From (24), we have

e(t + 1) = (( I � hL) 
 I m )e(t) +
��

I n �
1
n

1n1T
n

�

 I m

�
� (t): (25)

Since L is symmetric forG being undirected. We selectpi 2 Rn such thatpT
i L = � i (L)pT

i

and form an unitary matrixP =
h

1np
n ; p2; � � � ; pn

i
to transformI � hL into a diagonal form

diag(1; (1 � h)� 2(L); � � � ; (1 � h)� n (L)) = PT (I � hL)P. Denote~e(t) = PT e(t) and partition

~e(t) into two parts , i.e.,~e(t) = [~eT
1 (t); ~eT

2 (t)]T . Then, from (25), we have

~e1(t + 1) =
��

1
p

n
1T

n

�
I n �

1
n

1n1T
n

��

 I m

�
� (t):

Note that
�

1p
n 1T

n

�
I n � 1

n 1n1T
n

� �

 I m = 0 and ~e1(t) = 1p

n

�
1T

n 
 I m

�
e(t) = 1p

n

nP

i =1
ei (t) = 0 .

Thus, it holds~e1(t) = 0 . Moreover, we have

~e2(t + 1) = �~e2(t) +

2

6
6
6
4

�
pT

2 � 1
n pT

2 1n1T
n

�

 I m

...
�
pT

n � 1
n pT

n 1n1T
n

�

 I m

3

7
7
7
5

� (t)

where� = diag((1 � h� 2(L))I m ; � � � ; (1� h� n (L))I m ). By Lemma 11, we know if0 < h < 2
� n

,

� is Schur stable. Recalling Lemma 10 yieldslim
t !1

~e2(t) = 0 . This and the fact thatlim
t !1

~e1(t) = 0

imply lim
t !1

e(t) = 0 , which leads to the validity of this result.
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Proposition 4: Suppose lim
t !1

� i (t) = 0 in (23), i 2 V , if the directed graphG(A) has

a spanning tree and0 < h < min
2� i � n

2Re(� i (L ))
j� i (L )j2

, then MAS (2) with (23) reaches consensus

asymptotically.

Proof: It can be proved by replacing the variable�x(t) in the proof of Proposition 3 with

x̂(t) de�ned in the proof of Proposition 1, and using the fact thatmax
2� i � n

j1 � h� i (L)j < 1 if G

has a spanning tree and0 < h < min
2� i � n

2Re(� i (L ))
j� i (L )j2

, which is stated in Lemma 12.

Now we give the convergence condition for (2) with (23) and its proof in detail when the

graph is directed.

Theorem 5:Under Assumptions 1 and 5, supposef � (t)g, f � (t)g are two sequences such that

(a) � (t) 2 [0; 1],
1P

t=0
� (t) ! 1 and

1P

t=0
� 2(t) < 1 ;

(b) 0 � � (t) � 1 ,
1P

t=0
� (t) ! 1 and

1P

t=0
� 2(t) < 1 .

If the directed graphG(A) is strongly connected and0 < h < %, where%= min
h

1

max
1� i � n

 
nP

j =1
aij

! ;

min
1� i � n

2Re(� i (L ))
j� i (L )j2

i
. Then, MAS (2) with (23) reaches consensus asymptotically,and the consensus

state is in setX � .

Proof: Since the graph is strongly connected, by Lemma 2, there exists a vectorw =

[w1 � � � wn ]T > 0 such thatwT L = 0. Submitting (23) to (2), we have

x i (t + 1) = � i (t) � ' i (t); i 2 V :

Consider the positive-de�nite Lyapunov function candidate V(t) =
nP

i =1
wi kx i (t) � x0k2, where

x0 2 X � . Taking the difference of functionV(t) yields

� V(t) = V(t + 1) � V (t)

=
nX

i =1

wi k� i (t) � ' i (t) � x0k2 �
nX

i =1

wi kx i (t) � x0k2

=
nX

i =1

wi k(1 � � (t))( � i (t) � x0) + � (t)(PX i (� i (t)) � x0)k2

�
nX

i =1

wi kx i (t) � x0k2

�
nX

i =1

wi

�
(1 � � (t))k� i (t) � x0k + � (t)kPX i (� i (t)) � x0)k

� 2
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�
nX

i =1

wi kx i (t) � x0k2

�
nX

i =1

wi k� i (t) � x0k2 �
nX

i =1

wi kx i (t) � x0k2

=
nX

i =1

wi kyi (t) � x0k2 �
nX

i =1

wi hr i (t); yi (t) � x0i

+
nX

i =1

wi kr i (t)k2 �
nX

i =1

wi kx i (t) � x0)k2

(26)

where yi (t) = x i (t) + h
P

j 2 N i

aij (x j (t) � x i (t)) and the last inequality follows form using the

non-expansiveness property of projection operator, i.e.,kPX i (� i (t)) � x0)k � k � i (t) � x0k. Since

r g+
i (t) denotes the subgradient of functiong+

i (y) at y = yi (t), we have

� hr i (t); yi (t) � x0i � � � (t)g+
i (yi (t)) � 0: (27)

Moreover, since0 < h < 1

max
1� i � n

 
nP

j =1
aij

! , we have0 < 1 � h
nP

j =1
aij < 1. By the convexity of the

norm square function, it holds

kyi (t) � x0k2 = k(1 � h
X

j 2 N i

l ij )(x i (t) � x0) + h
X

j 2 N i

l ij (x j (t) � x0)k2

� (1 � h
X

j 2 N i

l ij )kx i (t) � x0k2 + h
X

j 2 N i

l ij kx j (t) � x0k2:

Thus, we have
nX

i =1

wi kyi (t) � x0k2 �
nX

i =1

wi (1 � h
X

j 2 N i

l ij )kx i (t) � x0k2

+ h
nX

i =1

wi

X

j 2 N i

l ij kx j (t) � x0k2

=
nX

i =1

wi kx i (t) � x0k2 � h
nX

i =1

wi

 
nX

j =1

l ij

!

kx i (t) � x0k2

+ h
nX

j =1

 
nX

i =1

wi l ij

!

kx j (t) � x0k2

=
nX

i =1

wi kx i (t) � x0k2

(28)
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where the last equation results from the fact that
nP

j =1
l ij = 0 and

nP

i =1
wi l ij = 0. Submitting (27)

and (28) into (26) yields

� V(t) � � � (t)
nX

i =1

wi g+
i (yi (t)) +

nX

i =1

wi kr i (t)k2: (29)

From(29), we haveV(t) � V(0)+
t � 1P

t=0
� 2(t)(wT 1n )K � V(0)+

1P

t=0
� 2(t)(wT 1n )K < 1 . By the

de�nition of V(t), it can be concluded thatx i (t) is bounded. By the fact thatkr i (t)k < 1 , we

know k� i (t)k < 1 , this and the continuity ofPX i (� i ) imply k� i (t) � PX i (� i (t))k < 1 . Thus,

lim
t !1

' i (t) = 0 . Since graphG(A) is strongly connected and0 < h < min
2� i � n

2Re(� i (L ))
j� i (L )j2

, from

Proposition 4, it can be concluded that MAS (2) with (23) reaches consensus asymptotically,

i.e., lim
t !1

kx i (t) � x j (t)k = 0 for all i; j 2 V . Moreover, similar to (26), we have

� V(t) = V(t + 1) � V(t)

=
nX

i =1

wi kyi (t) � x0 � r i (t) � ' i (t)k2 �
nX

i =1

wi kx i (t) � x0)k2

=
nX

i =1

wi kyi (t) � x0 � r i (t) � ' i (t)k2 �
nX

i =1

wi kx i (t) � x0)k2

=
nX

i =1

wi kyi (t) � x0k2 � 2
nX

i =1

wi hr i (t) + ' i (t); yi (t) � x0i

+
nX

i =1

wi kr i (t) + ' i (t)k2 �
nX

i =1

wi kx i (t) � x0)k2

� � 2
nX

i =1

wi hr i (t) + ' i (t); yi (t) � x0i +
nX

i =1

wi kr i (t) + ' i (t)k2

= � 2
nX

i =1

wi hr i (t); yi (t) � x0i � 2
nX

i =1

wi h' i (t); � i (t) � x0i

� 2
nX

i =1

wi h' i (t); r i (t)i +
nX

i =1

wi kr i (t) + ' i (t)k2

= � 2
nX

i =1

wi hr i (t); yi (t) � x0i � 2
nX

i =1

wi h' i (t); � i (t) � x0i

+
nX

i =1

wi

�
kr i (t)k2 + k' i (t)k2

�
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� � 2� (t)
nX

i =1

wi g+
i (x i (t)) � 2� (t)

nX

i =1

wi k� i (t)k2
X i

+
nX

i =1

wi
�
kr i (t)k2 + k' i (t)k2

�
(30)

where the �rst inequality results directly from (28). Note that
1P

t=0

nP

i =1
wi (kr i (t)k2 + k' i (t)k2) <

1 and � 2� (t)
nP

i =1
wi g+

i (x i (t)) � 2� (t)
nP

i =1
wi k� i (t)k2

X i
< 0. By Lemma 5 and the fact that

lim
t !1

x i (t) = lim
t !1

x j (t), it can be concludedV(t) converges and it holds
1P

t=0
(� (t)

nP

i =1
wi g+

i (x i (t))+

� (t)
nP

i =1
wi k� i (t)k2

X i
) < 1 . Since � (t)g+

i (x i (t)) > 0 and � (t)k� i (t)k2
X i

> 0 for all t > 0

and i = 1; � � � ; n, we have
1P

t=0
� (t)g+

i (x i (t)) < 1 and
1P

t=0
� (t)k� i (t)k2

X i
< 1 . By the facts

1P

t=0
� (t) ! 1 and

1P

t=0
� (t) ! 1 , we havelim

t !1
inf k� i (t) � PX i (� i (t))k = lim

t !1
inf g+

i (x i (t)) = 0 .

Thus, there exists a subsequencef x i (tk)g of x i (t) such thatlim
k!1

x i (tk) = x �
i , wherex �

i is a vector

such thatg+
i (x �

i ) = hi (x �
i ) = 0 for eachi = 1; � � � ; n. Recall the fact thatlim

t !1
x i (t) = lim

t !1
x j (t),

we havex �
i = x �

j for any i; j 2 V . Let x � = x �
i , we have lim

k!1
x i (tk) = x � . By the fact

nP

i =1
wi kx i (t) � x0k2 converges andlim

t !1
_x i (t) = 0 , we can concludelim

t !1
x i (t) = lim

k!1
x i (tk) = x � .

Furthermore, note thatr i (t) ! 0 as t ! 1 , thus lim
t !1

inf k� i (t) � PX i (� i (t))k = 0 and

lim
t !1

x i (t) = x � imply lim
t !1

kx � � PX i (x
� )k = 0 for any i 2 V . This meansx 2 X = \ n

i =1 X i .

Therefore,x � is a feasible solution to CFP (3), i.e.,x � 2 X � .

Corollary 3: Under Assumptions 1 and 5, supposef � (t)g, f � (t)g are two sequences such

that

(a) � (t) 2 [0; 1],
1P

t=0
� (t) ! 1 and

1P

t=0
� 2(t) < 1 ;

(b) 0 � � (t) � 1 ,
1P

t=0
� (t) ! 1 and

1P

t=0
� 2(t) < 1 .

If the graphG(A) is undirected and strongly connected,0 < h < 1

max
1� i � n

nP

j =1
aij

. Then, MAS (2)

with (23) reaches consensus asymptotically, and the consensus state is in setX � .

Proof: By Ger�sgorin Disc theorem, we can concludeh < 2
� N

if h < 1

max
1� i � n

nP

j =1
aij

. Together

with Lemma 11, it can be proved by using the similar approach to Theorem 5 and hence the

proof is omitted.
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VI. A SPECIAL CASE: A DISTRIBUTED GRADIENT-BASED ALGORITHM FOR CFPS

INVOLVING LINEAR INEQUALITIES

In this section, we will develop a distributed gradient-based algorithm for the CFP as follows.
8
<

:

A i x � bi � 0

x 2 X :
�= \ n

i =1 X i

i = 1; � � � ; n (31)

whereA i 2 Rm i � r andb2 Rm i . It assumes CFP (31) has a non-empty feasible solution setX � .

For a vectory = [ y1; � � � ; yn ]T , we de�ne y+ = [ y+
1 ; � � � ; y+

n ]T and y� = [ y�
1 ; � � � ; y�

n ]T ,

wherey+
i = max( yi ; 0) andy�

i = min( yi ; 0). We introduce a function (y) = ky+ k2. Note that

 (y) = 0 if and only if y � 0. The function (y) is convex and differentiable. See the following

lemma for detail.

Lemma 13:For any vectory 2 Rr , the function (y) = ky+ k2 is convex, differentiable and

its gradient function at pointy is r y  (y) = 2 y+ .

Proof: . For any vectorz 2 Rr , we have (y + z) = k(y + z)+ k2 = ky + z � (y + z)� k2 �

ky + z � (y)� k2 = ky+ + zk2 �  (y) + 2[ y+ ]T z + kzk2, where the �rst inequality follows

from the fact that(y + z)� = arg min v� 0 k(y + z) � vk. Moreover, it holds that (y + z) =

k(y+ z) � (y+ z)� k2 = k(y+ +[ y� + z� (y+ z)� ]k2 �  (y)+2[ y+ ]T z+ ky� + z� (y+ z)� k2 �

 (y) + 2[ y+ ]T z, where the �rst inequality follows from the fact that it holds that[y+ ]T y� = 0

and [y+ ]T (y + z)� � 0. Therefore, it holds thatlim
" ! 0

 (y+ " � y)�  y
" = 2[y+ ]T � y. This means

r y (y) = 2 y+ . From the fact that (y + z) �  (y) + 2[ y+ ]T z, we know (y) is convex.

Now we present the following distributed gradient-based algorithm for CFP (31).

_x i (t) =
X

i 2 N i

aij (x j (t) � x i (t)) � �
�
AT

i (A i x i (t) � bi )+ + x i (t) � PX i (x i (t))
�

; i = 1; � � � ; n

(32)

where� > 0 is a positive coef�cient,x i (t) 2 Rr represents the estimation value of the solutions

to CFP (31).

Theorem 6:If the graphG(A) is strongly connected, thenx i (t) in (32) converges to a �xed

vectorx � asymptotically fori = 1; � � � ; n andx � is in feasible solution setX � of (31).

Proof: By Lemma 13, it is not dif�cult to prove that the termAT
i (A i x i � bi )+ is the gradient

of functionk(A i x i � bi )+ k2. It can also be viewed as the unique subgradient ofk(A i x i � bi )+ k2.

Then this result can be proved by the same method as Theorem 3 and hence it is omitted.
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VII. SIMULATIONS

In this section, we give numerical examples to illustrate the obtained results. Consider a

multi-agent system consisting of �ve agents, the goal of theagents is to cooperatively search a

feasibility z� = [ z�
1; z�

2]T of the CPF which includes two closed convex setsX 1 = f (z1; z2)j2 �

z1 � 4; 0 � z2 � 2g and X 2 = f (z1; z2)j2:5 � z1 � 4:5; 1 � z2 � 3g, and three linear

inequalitiesc(z) = 2 z1 � 3z2 � 2 � 0, d(z) = 2 z1 + 3z2 � 11 � 0 andq(z) = 8 z1 � 3z2 � 28 � 0.

In Fig.1, the yellow region represents the feasible region.Set X i is only known to agenti

for i = 1; 2, and agents 3, 4 and 5 can only have access toc(z); d(z); q(z), respectively. In

the following, we will present simulation results in three cases: The �rst two cases are for

continuous-time distributed algorithms under the �xed andtime-varying graphs, respectively.

The third case is for the discrete-time distributed algorithm under the �xed graph. For each case,

the communication graph is directed.

We �rst show the simulation result in the �rst case. The communication graph is shown in

Fig. 2, which is strongly connected. The weight of each edge connecting different agents is

1. Set coef�cient � = 20 and let the initial state of each agent bex1(0) = [0 ; 5]T ; x2(0) =

[3; � 2]T ; x3(0) = [2 ; 3]T ; x4(0) = [5 ; 1]T ; x5(0) = [2 ; � 3]T . The trajectory of MAS (1) with (11)

is shown in Fig. 3. All agents also reach consensus atz� = [2:58; 1:23]T which is a solution to

the CFP. This is consistent with the result established in Theorem 3.

Now, we show the simulation result in the second case, the communication topologies switch

between two bidirectional subgraphs depicted in Fig. 4 and the switching law is given by Fig. 5.

It is obvious that the� � graph associated with the time-varying graph is strongly connected. The

weight of each edge connecting different agents is also being 1. Set coef�cient� = 35. Under

the same initial condition as the �rst case, the trajectory of MAS (1) with (11) is shown in Fig.

6. All agents reach consensus atz� = [2:61; 1:37]T while remaining in the feasible region of the

CFP. This is consistent with the result established in Theorem 4.

In addition, we show the simulation result in the third case.The communication topology in

the �rst case is used to conduct this simulation. Set� (t) = � (t) = 1
0:02t+1 andh = 0:25. Under

the same initial condition as the last two cases, the trajectory of MAS (2) with (23) is shown

in Fig. 7. All agents reach consensus atz� = [2:57; 1:54]T which is a solution to the CFP. This

accords with the result established in Theorem 5.
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Fig. 1. The feasible region of the CFP. Fig. 2. The communication graph in the �rst case.
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Fig. 3. The trajectory of the multi-agent system in the �rst case. Symbol “*” represents the initial states of agents while “� ”

represents the �nal states of them.

VIII. C ONCLUSIONS

In this paper, the CFPs have been studied for multi-agent systems through local interactions.

The distributed control algorithms were designed for both continuous- and discrete-time systems,

respectively. In each case, a centralized approach was �rstintroduced to solve the CFP. Then

distributed control algorithms were proposed based on the subgradient and projection operations.

The conditions associated with connectivity of the communication graph were given to ensure

convergence of the distributed algorithms. The results showed that for the continuous-time case,

if the communication graph is �xed and strongly connected, the MAS can reach consensus
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Fig. 4. The communication graph in the second case, which consists of two subgraphs. The left one is labeled 1 and the right

one is labeled 2.
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Fig. 5. The switching law of the time-varying graph.
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Fig. 6. The trajectory of the multi-agent system in the second

case. Symbol “*” represents the initial states of agents while “� ”

represents the �nal states of them.

asymptotically and the consensus state is located in the solution set of the CFP. Moreover, the

same result can be achieved if the� � graph associated with a time-varying graph is strongly

connected. For the discrete-time case, under the conditionof strong connectivity associated with

the directed graph, if the control gainh and the step-sizes� (t) and � (t) are properly chosen,

convergence of the distributed algorithm can also be guaranteed. Furthermore, a distributed

gradient-based algorithm has been designed for a special case in which the CFP involves linear

inequalities. Finally, simulation examples have been conducted to demonstrate the effectiveness
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Fig. 7. The trajectory of the multi-agent system in the thirdcase. Symbol “*” represents the initial states of agents while “� ”

represents the �nal states of them.

of our results. Our future work will focus on some other interesting topics, such as the case

under quantization, time delays, packet loss and communication bandwidth constraints, which

will bring new challenges in solving CFPs over a network of agents.
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