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Distributed Algorithms for Searching Generalized
Nash Equilibrium of Noncooperative Games

Kaihong Lu , Gangshan Jing , and Long Wang

Abstract—In this paper, the distributed Nash equilibrium (NE)
searching problem is investigated, where the feasible action sets
are constrained by nonlinear inequalities and linear equations.
Different from most of the existing investigations on distributed
NE searching problems, we consider the case where both cost
functions and feasible action sets depend on actions of all play-
ers, and each player can only have access to the information of its
neighbors. To address this problem, a continuous-time distributed
gradient-based projected algorithm is proposed, where a leader-
following consensus algorithm is employed for each player to
estimate actions of others. Under mild assumptions on cost func-
tions and graphs, it is shown that players’ actions asymptotically
converge to a generalized NE. Simulation examples are presented
to demonstrate the effectiveness of the theoretical results.

Index Terms—Consensus, distributed algorithm, Nash equilib-
rium (NE), noncooperative game.

I. INTRODUCTION

IN NONCOOPERATIVE games, Nash equilibrium (NE) is
one of the most important solution concepts. If the feasible

action set of each player depends on the actions of the other
players, the solution to a noncooperative game is referred to
as generalized NE (GNE) [1]. The problems of searching NEs
or GNEs have received increasing attention in recent years.
This is due to its widely practical applications including power
systems [2], social science [3], and radio networks [4].

Vast results on searching NEs have been achieved. For
example, a gradient method was employed for finding differ-
ential NEs of continuous games in [5]. For potential games,
learning algorithms were studied to search NEs in [9] and [10],
and an extremum seeking-based algorithm was presented
in [11]. Moreover, strategies were designed for solving GNE
problems in [12]–[14]. Unfortunately, all of the aforemen-
tioned works are conducted by centralized approaches.

Recently, along with the penetration of multiagent
networks [15]–[22], distributed algorithms for seeking NEs
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in noncooperative games have been investigated. In [24], dis-
tributed iterative regularization algorithms were investigated
for monotone games. In [25], a distributed extremum seeking-
based algorithm was proposed to search NEs. In [26], based on
saddle point strategy, a continuous-time distributed algorithm
was proposed for seeking an NE in a two-network zero-sum
game. In [27], with coupled linear constraints considered, a
discrete-time distributed primal-dual algorithm was proposed
to seek GNEs, where players make decisions by exchanging
multipliers with their neighbors through a network. In [28],
distributed stochastic gradient strategies were developed for
seeking a random NE. In [29], with transmission delays
considered, distributed gradient-based computation algorithms
were presented for seeking GNEs. Works in [24]–[29] assume
that players’ cost functions are only determined by their
neighbors’ actions, or require real actions of their opponents.
However, costs or payoffs of players are usually affected not
only by their neighbors’ actions, but also by the other players’,
and achieving full information is often impractical in many
engineering systems, such as distributed sensor networks [18]
and mobile ad-hoc networks [33].

These days, considering the case where players’ cost
functions depend on all players’ actions, the problems of
distributively searching NEs through a multiagent network
have been investigated [30]–[34]. Distributed strategies were
designed to find an NE of aggregative games in [30] and
[31], where each player’s cost function depends on its own
action and an aggregate of all players’ actions. With coupled
linear equation constraints considered, a continuous-time dis-
tributed strategy based on projected dynamics and tracking
dynamics is designed for searching a GNE in [32], where
a nonsmooth average consensus-tracking algorithm is used
to compute the aggregate of the game. However, for a gen-
eral class of games where players’ cost functions are not
coupled through a common term, the aggregate of actions
is not enough for players to make decisions. An asyn-
chronous gossip-based algorithm was proposed for searching
an NE without using full information from all players in [33],
and continuous-time distributed NE-seeking strategies were
investigated in [34].

Investigations [33], [34] involve the general class of games
without coupled constraints. In applications when players com-
pete for shared network resources [2]–[4], players usually have
not only private constraints determined by their own actions,
but also coupled or shared constraints that are determined by
their opponents’ actions. Thus, it is significant to study general
games with both private and coupled constraints.
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Motivated by the observations above, in this paper, we first
consider the problem of distributively searching a GNE of
noncooperative games via a multiagent network, where both
private and coupled constraints are involved. Then, we propose
a novel continuous-time distributed gradient-based projected
(DGP) algorithm to address this problem. Finally, the conver-
gence of the continuous-time DGP algorithm is proved. The
novelty and contributions are summarized as follows.

1) Each player’s private constraints are modeled by convex
inequalities, and the coupled constraint is modeled by a
linear equation that is shared by all players. Compared
with works [30]–[32], the game considered by us is
general, in which the couplings in the cost functions
need not to be a common aggregate. Different from [33]
and [34], here players’ feasible action sets are coupled
across actions of their opponents. Owing to the coex-
istence of nonlinear inequality and coupled equation
constraints, challenges emerge in developing algorithms
to solve the suboptimization problems that players aim
to selfishly minimize their own cost functions.

2) In the presented algorithm, a leader-following consensus
algorithm is employed for each player to estimate
actions of others, and a consensus-based estima-
tor is employed for each player to estimate the
optimal multiplier associated with the coupled equation.
Different from [32], where the algorithm involves a suf-
ficiently large and fixed control gain, our algorithm relies
on a diminishing gain, which helps ensure the conver-
gence of the algorithm and reduce the computing cost.
By implementing the proposed algorithm, each player
makes decisions by using the information associated
with its own cost function, its own private constraint
and the coupled constraint, its own action, and actions
and estimates received from its neighbors.

3) The convergence of the continuous-time DGP algorithm
is proved by using convex analysis theory, consen-
sus theory, and Lyapunov stability theory. The result
shows that if the graph is undirected and connected,
the proposed algorithm enables the players’ actions
to asymptotically converge to a GNE. Different from
the continuous-time distributed algorithm for search-
ing GNEs of aggregate games in [32], where the cost
functions with a common aggregate term are assumed
to be twice differentiable, our results hold even if the
cost functions in noncooperative games are not twice
differentiable.

The rest of this paper is organized as follows. In Section II,
we formulate the problem to be studied and present the
continuous-time distributed algorithm for searching a GNE.
In Section III, we state our main results and give theoreti-
cal proofs in detail. In Section IV, simulation examples are
presented. Section V concludes the whole paper.

II. PRELIMINARIES

A. Notations

Throughout this paper, we use |x| to represent the absolute
value of scalar x. R and R+ denote the set of real numbers

and set of non-negative real numbers, respectively. Let R
m

be the m-dimensional real vector space. For a given vec-
tor x ∈ R

m, ‖x‖ denotes the standard Euclidean norm of
x, that is, ‖x‖ = √

xTx. 1m denotes the m-dimensional vec-
tor with elements being all ones. For a ∈ R, we denote
a+ = max(a, 0) and a− = min(a, 0). For vector x ∈ R

m, we
denote x+ = [x+

1 , . . . , x+
m]T and x− = [x−

1 , . . . , x−
m]T , respec-

tively. For differentiable function f (·) : R
m × R

n → R, we
denote the gradient of f (x) with respect to x by ∇xf (x). Given a
set of vectors xi ∈ R

mi , i = 1, . . . , n, diag(x1, . . . , xn) denotes
a matrix where the ith diagonal block is xi and other ele-
ments are zero. For matrices A and B, the Kronecker product
is denoted by A ⊗ B.

Set K ⊂ R
m is called a convex set if γ x+ (1−γ )y ∈ K for

any scalar 0 < γ < 1 and x, y ∈ K. For a closed convex set K,
there is a unique element PK(x) ∈ K such that ‖x − PK(x)‖ =
infy∈K ‖x − y‖, where PK(·) is called the projection onto the
set K.

Lemma 1 [39]: If K ⊂ R
m is a closed convex set, then for

any u ∈ R
m and v ∈ K, the following inequality holds:

(u − PK(u))T(PK(u) − v) ≥ 0. (1)

B. Problem Formulation

Consider a game �(V,�, J) with n players in a communica-
tion graph G(A). V = {1, . . . , n} represents the set of players;
� = �1 × · · · × �n denotes the action set of players, where
�i ⊂ R

m is the action set of player i; J = (J1, . . . , Jn), where
Ji is the cost function of player i; and A is the weighted
adjacency matrix of G(A). Let x = (xi, x−i) ⊂ � denote
all players’ actions, where xi is the action of player i and
x−i denotes actions of players other than player i, that is,
x−i = [xT

1 , . . . , xT
i−1, xT

i+1, . . . , xT
n ]T . For game �(V,�, J), an

action profile x∗ = (x∗
i , x∗−i) is called the NE of this game if

and only if Ji(x∗
i , x∗−i) ≤ Ji(xi, x∗−i) holds for any xi ∈ �i and

i ∈ V .
In this paper, we consider game �(V,�, J) with both pri-

vate and coupled constraints, and the feasible action set of all
players is defined as χ := χc∩(χ

p
1 ×· · ·×χ

p
n ), where χc repre-

sents the coupled constraint defined as χc = {x ∈ �|h(x) = 0},
where h(x) = cTx − d, c = [cT

1 , . . . , cT
n ]T , ci ∈ R

m and
d ∈ R; χ

p
i denotes player i’s private constraint defined as

χ
p
i = {xi ∈ �i|gi(xi) ≤ 0} and function gi(·) : R

m → R can
be nonlinear for any i ∈ V . Accordingly, player i’s feasible
action set is denoted by χi(x−i) = {xi|(xi, x−i) ∈ χ}. To find
an optimal action in its feasible action set, minimize its own
cost function subject to a constraint

min
xi

Ji(xi, x−i)

subject to xi ∈ χi(x−i). (2)

Since each χi(x−i) depends on other players’ actions, (2)
can be viewed as a GNE problem, and we refer the reader
to [1] for detail. Note that game �(V,�, J) considered by us
is general, where the cost functions in (2) need not to be in the
form of aggregative games [30]–[32]. Some basic assumptions
on the cost functions, which are also made in [33], are given
as follows.
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Assumption 1: For i ∈ V , �i ∈ R
m is a nonempty, compact

and convex set; Ji(xi, x−i) is continuous for x ∈ �, differen-
tiable, and convex with respect to xi for any x−i ∈ R

(n−1)m;
gi(y) is differentiable and convex for any y ∈ R

m; and the
feasible action set χ is nonempty.

In Assumption 1, the compactness of �i means that there
exists some constant Ki > 0 such that ‖ξi‖ ≤ Ki for any
ξi ∈ �i [45]. Different from [32], here each Ji(xi, x−i) is
unnecessary to be twice differentiable with respect to xi.
Define �(x) = [∇x1J1

T(x), . . . ,∇xn Jn
T(x)]T , which is usually

called pseudo-gradient mapping [33].
Assumption 2: Assumptions on strong monotonicity and

Lipschitz continuity of cost functions are made as follows.
1) Strong Monotonicity: (�(x)−�(y))T(x −y) ≥ μ‖x−y‖2

for some μ > 0, ∀ x, y ∈ �.
2) Lipschitz Continuity: ‖∇xiJi(xi, w) − ∇xiJi(xi, z)‖ ≤

γ ‖w − z‖ for some constant 0 < γ < (2
√

μ/
√

n),
∀ xi ∈ �i; w, z ∈ R

(n−1)m, i ∈ V .
To ensure that the information on each player’s action

can reach all others, the following connectivity assumption
associated with communication graph G(A) is made.

Assumption 3: G(A) is undirected and connected.
Problem 1: For game �(V,�, J), suppose that player i can

only communicate with its neighbors via communication graph
G(A), and has access to the information associated with Ji,
�i, gi, h for any i ∈ V . The goal of this paper is to design
a distributed strategy for the players such that their actions
converge to a GNE that is located in the feasible action set χ .

Lemma 2: Under Assumptions 1 and 2, for (2), x∗ =
(x∗

i , x∗−i) is a GNE if there exist Lagrangian multipliers y∗ ∈ R

and W∗ ∈ R
n such that

⎧
⎨

⎩

x∗ = P�

[
x∗ − (�(x∗) − cy∗ + ∇G(x∗)W∗)

]

cTx∗ − d = 0
W∗ = [

W∗ + g(x∗)
]+

(3)

where ∇G(x∗) = diag(∇x1g1(x∗
1), . . . ,∇xn gn(x∗

n)) and g(x∗) =
[g1(x∗

1), . . . , gn(x∗
n)]

T .
Proof: Consider the following variational inequality

problem:

Find x∗

subject to �
(
x∗)T(

x − x∗) ≥ 0 for all x ∈ χ. (4)

Since �(x) is strongly monotone, by [40, Th. 2.3.3], we
know (4) has a unique solution. Based on the Lagrangian dual-
ity for variational inequality, we know x∗ is a solution of (4) if
and only if there exist Lagrangian multipliers y∗, ω∗

i ∈ R such
that the following Karush–Kuhn–Tucker (KKT) conditions
hold:

⎧
⎪⎪⎨

⎪⎪⎩

(
zi − x∗

i

)T(∇xiJi(x∗) − y∗ci

+ ω∗
i ∇xigi

(
x∗

i

)) ≥ 0, ∀zi ∈ �i

cTx∗ − d = 0
ω∗

i ≥ 0, gi
(
x∗

i

) ≤ 0, ω∗
i gi

(
x∗

i

) = 0

(5)

for any i ∈ V and τ > 0. Since χ is convex, by [41, Th. 3.9],
we know any solution of (4) is a GNE of (2). Consequently,
the solution to (5) is a GNE of (2). From the projection
inequality (1) in Lemma 1, we know the first inequality in (5)
holds if and only if x∗

i = P�i[x
∗
i − (∇xiJi(x∗) − ciy∗ +

ω∗
i ∇xigi(x∗

i ))], and the last three conditions in (5) hold if and
only if ω∗

i = [ω∗
i + gi(x∗

i )]
+. This leads to the validity of the

result.
For simplicity, we denote the optimal Lagrangian multiplier

sets consisting of y∗ and W∗ that satisfy KKT condition (3)
by Y

∗ and W
∗, respectively.

C. Distributed Algorithms for Searching GNE

For Problem 1, let vector x−i = [xT
i1, . . . , xT

i(i−1), xT
i(i+1),

· · · , xT
in]T denote player i’s estimates on all players’ actions

but its own’s, where xij is the player i’s estimate on player j’s
action. For ease, we denote xi = [xT

i1, . . . , xT
i(i−1), xT

i , xT
i(i+1),

· · · , xT
in]T , where xi is player i’s real action. We propose the

following DGP algorithm for player i to seek a GNE of game
�(V,�, J):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −αtxi(t) + αtP�i

[
xi(t) −

(
∇xiJi(xi(t)) − ci(yi(t)

− cTxi(t) + d
) + [

ωi(t) + gi(xi(t))
]+∇xigi(xi(t))

)]

ẋij(t) = ∑

k∈Ni,k �=j
aik

(
xkj(t) − xij(t)

)

+ aij
(
xj(t) − xij(t)

)
, j �= i

ẏi(t) = ∑

k∈Ni

aik(yk(t) − yi(t)) − nαt
2

(
ci

Txi(t) − d
n

)

ω̇i(t) = −αt
2 ωi(t) + αt

2

[
ωi + gi(xi)

]+

i ∈ V

(6)

where yi(t) ∈ R denotes player i’s estimate on the Lagrangian
multiplier associated with the coupled equation constraint;
ωi(t) ∈ R denotes player i’s estimate on the Lagrangian
multipliers associated with its own inequality constraint, where
each aik is the adjacency weight of an edge in graph G(A);
Ni is the set of indices k such that (i, k) is an edge; xi(0) =
x0

i ∈ �i; ωi(0) = ω0
i ∈ R+; and αt > 0 is a continuous and

nonincreasing function of t such that
∫ ∞

0
αtdt → ∞ and

∫ ∞

0
α2

t dt < ∞. (7)

By implementing algorithm (6), players make decisions by
only using their own actions, their neighbors’ actions, and
estimates. Moreover, for the coupled constraint, instead of
using a global multiplier y, local multiplier yi is used to
estimate the optimal multiplier y∗. Thus, algorithm (6) is dis-
tributed. In (6), for any j �= i, player i updates estimate xij

on player j’s action by a leader-following consensus algo-
rithm [47]–[49], where the real action xj, j ∈ V can be viewed
as the leader’s state. The estimator dynamics for yi is moti-
vated by the consensus algorithms [6]–[8], [35]–[38]. And the
gradient-based projected dynamics in algorithm (6) is inspired
by the traditional gradient-based projected methods for convex
programming problems [42]. A similar method has been used
for aggregative games in [32], where it does not involve the
nonlinear inequality constraints.

Remark 1: From (7), it is obvious that αt is diminishing,
that is, limt→∞ αt = 0. The conditions for gain αt are inspired
by the diminishing step size in discrete-time gradient-based
strategy [43], which is also used in [44]–[46]. The diminish-
ing property of αt plays an important role in driving all xi,
i ∈ V and yi, i ∈ V to reach consensus, respectively. In the
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related work on aggregative games [32], a fixed gain to enlarge
the consensus term is used for all estimates on the Lagrangian
multiplier to reach consensus. There is a restriction that the
gain needs to be larger than the product of the number of play-
ers and the maximum value of local functions. Nevertheless,
estimating this product is complex and requires global infor-
mation. Moreover, quite large edge-weights or control gains
are necessary when the product is great, which may cause
high computation and communication costs. On the contrary,
using the easily achieved time-varying gain, the former restric-
tion can be removed. In particular, a suitable choice of αt is
αt = (a0/[t + b0]) for any t ≥ 0, where a0 and b0 are two
positive constants.

Remark 2: With (6), though the time-varying gain αt is
involved, the solutions of xi(t) and ωi(t) are maintained in
�i and R+, respectively, for any i ∈ V . For any t ≥ 0, xi(t)
and ωi(t) can be computed as follows:

xi(t) = exp

(

−
∫ t

0
αsds

)

x0
i +

∫ t

0
exp

(

−
∫ t

s
ατ dτ

)

αs

× P�i

[
xi(s) −

(
∇xiJi(xi(s)) − ci

(
yi(s) − cTxi(s) + d

)

+ [
ωi(s) + gi(xi(s))

]+∇xigi(xi(s))
)]

ds.

By the integration mean value theorem and
(d/ds)(exp(− ∫ t

s ατ dτ )) = αs exp(− ∫ t
s ατ dτ ), it holds

xi(t) = exp

(

−
∫ t

0
αsds

)

x0
i +

(

1 − exp

(

−
∫ t

0
αsds

))

× P�i

[
xi(θi)−

(
∇xi Ji

(
xi(xi(θi)) − ci

(
yi(θi) − cT xi(θi) + d

)

+ [
ωi(θi) + gi(xi(θi))

]+∇xi gi(xi(θi))
)]

for some fixed θi ∈ (0, t). Since x0
i ∈ �i, by the property of

the closed convex set, it holds xi(t) ∈ �i for any t ≥ 0 and
i ∈ V . Similarly, we can conclude ωi(t) ∈ R+ for any i ∈ V .

III. MAIN RESULTS

In this section, we will analyze the convergence of (6). Let
us start this section by stating the main result. For simplicity,
we denote the solution to (3) by x∗, which is also a GNE of
game for (2).

Theorem 1: Under Assumptions 1–3, by algorithm (6), each
xi(t), i ∈ V asymptotically converges to x∗. Moreover, yi(t),
i ∈ V , asymptotically converges to a common point y∗ and
[ω1(t), . . . , ωn(t)]T asymptotically converges to a fixed point
W∗, where y∗ ∈ Y

∗ and W∗ ∈ W
∗.

In the following equation, the time index t is omitted when
it is not necessary. Denoting variable eij = xij − xj, it follows
from (6) that:

ėij =
∑

k∈Ni,k �=j

aik
(
ekj − eij

) − aijeij − ẋj

for any i, j ∈ V and i �= j. Let ej = [eT
1j, . . . , eT

(j−1)j,

eT
(j+1)j, . . . , eT

nj]
T , then, for any j ∈ V , we have

ėj = −((
Lj + �j

) ⊗ Im
)
ej − ẋj (8)

where [Lj]ik = −aik if i �= k and [Lj]ik = ∑
k∈Ni,k �=j aik if

i = k, �j = diag(a1j, . . . , a(j−1)j, a(j+1)j, · · · , anj). For j ∈ V ,

we denote λj as the smallest eigenvalue of matrix (Lj + �j).
Moreover, for any t ≥ 0, we denote

Y = 1

n

n∑

i=1

yi.

The following lemmas, which are useful to prove the main
results, are introduced.

Lemma 3 [46]: Let b(t) be a continuous function, if
lim

t→∞ b(t) = b and 0 < π < 1, then limt→∞
∫ t

0 π t−sb(s)ds

= −(b/lnπ).
Lemma 4: Under Assumptions 1 and 3, for any j ∈ V , the

following statements hold:
1) limt→∞ ej = 0;
2) limt→∞ |yj − Y| = 0;
3)

∫ ∞
0 αt‖ej ‖dt < ∞.

Proof: 1) From Remark 2, we know xj(t) ∈ �j for any
t ≥ 0. By the compactness of �j in Assumption 1, we have
‖xj(t)‖ ≤ Kj. Together with P�j[ · ] ∈ �j, it holds that

∥
∥ẋj(t)

∥
∥ = αt

∥
∥−xj(t) + P�j

[�j(t)
]∥
∥

≤ αt
(∥
∥xj(t)

∥
∥ + ∥

∥P�j

[�j(t)
]∥
∥
)

≤ 2αtKj (9)

where

�j(t) = xj(t) −
(
∇xjJj

(
xj(t)

) − cj
(
yj(t) − cTxj(t) + d

)

+ [
ωj(t) + gj(xi(t))

]+∇xigj
(
xj(t)

))
.

Each ẋj(t) can be viewed as an input of linear system (8).
Since graph G(A) is connected, by [49, Lemma 3], we know
(Lj + �j) is positive definite; thus, λj > 0 for j ∈ V . Letting
λ = max1≤j≤n exp(−λj) and K = max1≤j≤n Kj, it is obvious
that 0 < λ < 1. By (8), it follows:

‖ej‖ ≤ λt‖ej(0)‖ + 2K
∫ t

0
ατλ

(t−τ)dτ . (10)

Since limt→∞ αt = 0, by applying Lemma 3 to (10), it can be
obtained that limt→∞ ej = 0.

2) Denote the Laplacian matrix of G(A) by L = [lik]n×n,
where lik = −aik if i �= k and lik = ∑

k∈Ni
aik if i = k, since

G(A) is connected, the n eigenvalues of L can be given as
0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L). See [6] for details. Letting
y = [y1, . . . , yn]T and ȳ = y − 1nY , we have

˙̄y = −Lȳ −
(

In − 1n1T
n

n

)

φ(t) (11)

where φ(t) = (nαt/2)[c1
Tx1(t) − d/n, . . . , cn

Txn(t) − d/n]T .
Since L is symmetric for G(A) being undirected, there must
exist an orthogonal matrix Q = [(1n/

√
n), Q0] such that

QTLQ = diag(0, λ2(L), . . . , λn(L)). Note QT(In−[1n1T
n /n]) =

[0n×1, QT
1 ]T , where Q1 = QT

0 (In − [1n1T
n /n]), from (11), it

follows:

QT ˙̄y = diag(0, λ2(L), . . . , λn(L))QTȳ − [0n×1, QT
1 ]Tφ.

Based on above dynamics, together with the fact ‖Q‖ = 1, we
can conclude

‖ȳ‖ = ‖QQT ˙̄y‖
≤ ‖QT ˙̄y‖
≤ ϑ t‖ȳ(0)‖ + ζ‖

∫ t

0
φ(τ)ϑ(t−τ)dτ‖
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where ϑ = exp(−λ2(L)) and ζ = ‖[0n×1, QT
1 ]‖. Recalling

the fact that xj ∈ �j and the boundedness of �j, we know
‖cj

Txj(t) − d/n‖ is bounded for any j ∈ V , which implies
limt→∞ φ(t) = 0. By the fact 0 < ϑ < 1 and reusing
Lemma 3, we can conclude limt→∞ ‖ȳ‖ = 0.

3) Due to the fact that αt is nonincreasing, from (10), one
has∫ ∞

0
αt‖ej‖dt ≤ α0‖ej(0)‖

∫ ∞

0
λtdt

+ 2K
∫ ∞

0
αt

∫ t

0
ατλ

t−τ dτ dt

= α0‖ej(0)‖
−lnλ

+ 2K
∫ ∞

0

∫ t

0
αtατλ

t−τ dτ dt.

Furthermore, we have
∫ ∞

0

∫ t

0
αtατλ

t−τ dτ dt =
∫ ∞

0

∫ t

0
λθαtαt−θ dθ dt

=
∫ ∞

0
λθ

∫ ∞

θ

αtαt−θ dtdθ

≤
∫ ∞

0
λθ

∫ ∞

θ

α2
t−θ dtdθ

≤ 1

−lnλ

∫ ∞

0
α2

t dt

< ∞ (12)

where the first equality holds by letting t−τ = θ , and the sec-
ond one results by changing the order of the integrals. By (12),
it holds that

∫ ∞
0 αt‖ej‖dt < ∞. This leads to the validity of

the result.
Due to the diminishing property of αt, based on (9), we

know limt→∞ ẋi(t) = 0 for any i ∈ V . Similarly, we can
conclude limt→∞ ẏi(t) = 0 and limt→∞ ω̇i(t) = 0 for any
i ∈ V . Nonetheless, it is not enough to determine whether the
actions converge to the GNE. With the help of Lemmas 1–4,
next we will present the proof of Theorem 1 in detail.

Proof of Theorem 1: First, letting X = [xT
1 , . . . , xT

n ]T and
W = [ω1, . . . , ωn]T , based on (6), we have
⎧
⎪⎨

⎪⎩

Ẋ = −αtX + αtP�

[
X −

(
�̄ − H̄c + ∇G(X)

[
W + g(X)

]+)]

Ẏ = −αt
2

(
cTX − d

)

Ẇ = −αt
2 W + αt

2

[
W + g(X)

]+

(13)

where �̄T = [∇x1J1
T(x1), . . . ,∇xn JT

n (xn], H̄ =
diag((Y − cTx1 + d)Im, . . . , (Y − cTxn + d)Im), ∇G(X) =
diag(∇x1g1(x1), . . . ,∇xn gn(xn)), and g(X) = [g1(x1), . . . ,

gn(xn)]T . Before going on, we define some other
variables as �(X) = [∇x1J1

T(X), . . . , ∇xnJT
n (X)]T ,

X̄ = P�[X − (�̄ − H̄c + ∇G(X)[W + g(X)]+)],
W̃ = [W + g(X)]+, Z = [XT , YT , WT ]T , and Z∗ = [x∗T , y∗T ,

W∗T ]T . Based on (13), we consider a Lyapunov function as
follows:

V(Z, t) = ϕ(Z) − ϕ
(
Z∗)−(

Z − Z∗)T∇Zϕ
(
Z∗) + 1

2
‖Z − Z∗‖2

(14)

where

ϕ(Z) =
n∑

i=1

Ji
(
xi, x∗−i

) + 1

2

(
‖W̃‖2 + ∣

∣Y − (
cTX − d

)∣
∣2

)
.

(15)

Note ‖W̃‖2 = ∑n
i=1([ωi + gi(xi)]+)2, and

([
ωi + gi(xi)

]+)2 =
{

(ωi + gi(xi))
2, if ωi ≥ −gi(xi)

0, otherwise.
(16)

Letting �i(ξ) = ωi + gi(xi), where ξ = [xT
i , ωi]T , note that

�i(ξ) is convex in ξ , together with the fact that for �i ≥
0, � 2

i is nondecreasing and convex in �i, it holds that � 2
i

is convex in ξ if ωi ≥ −gi(xi). This implies that ‖W̃‖2 is
convex in W and X. Moreover, |Y − (cTX − d)|2 is convex
in X and Y . Then, ϕ(Z) is convex in Z. As a result, one has
V(Z, t) ≥ (1/2)‖Z − Z∗‖2.

In the following equation, we will prove the convergence
of V(Z, t). From (14)–(16), there are ∇W‖W̃‖2 = 2W̃ and
∇X‖W̃‖2 = 2∇G(X)W̃. Thus, we have

∇ZV(Z, t) = �(Z) − �
(
Z∗) + Z − Z∗ + ϒ (17)

where

�(Z) =
⎡

⎣
�(X) − c(Y − cTX + d) + ∇G(X)W̃

Y − cTX + d
W̃

⎤

⎦

ϒ =
⎡

⎣
�̃ − �(X)

0
0

⎤

⎦

�̃ = [∇x1J1
T(x1, x∗−1), . . . ,∇xn JT

n (xn, x∗−n)
]T

.

Based on (17), taking the derivative of function V(Z, t) with
respect to t yields

V̇(Z, t) = (∇ZV(Z, t))T Ż

= αt
(
X̄ − X

)T
(

X − x∗ − �
(
x∗) + cy∗ − ∇G(X)W∗

+ �(X) − c
(
Y − cTX + d

)

+ ∇G(X)W̃ + �̃ − �(X)
)

+ αt

2
|cTX − d|2 − αt

(
Y − y∗)T(

cTX − d
)

− αt

2
‖W − W̃‖2 − αt

(
W̃ − W∗)T(

W − W̃
)
.

By the fact that (X − x∗)Tc(Y − cTX + d) = −|cTX − d|2 +
Y(cTX − d) and W − W̃ = [W + g(X)]− − g(X), it follows:

V̇(Z, t) = αt
(
X̄ − x∗)T(

X̄ − X + �(X) − c
(
Y − cTX + d

)

+ ∇G(X)W̃
) + αt

(
X̄ − X

)T
(
�̃ − �(X)

)

− αt‖X̄ − X‖2 − αt
(
X̄ − x∗)T(

�
(
x∗) − cy∗

+ ∇G
(
x∗)W∗) − αt

2

∣
∣cTX − d

∣
∣2 − αt

2
‖W − W̃‖2

− αt
(
X − x∗)T(

�(X) − �
(
x∗))

− αtW̃
T
([

W + g(X)
]− − g(X)

+ (∇G(X))T(
X − x∗))

+ αtW
∗T

([
W + g(X)

]− − g(X)

+ (∇G
(
X∗))T(

X − x∗)). (18)
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Noting that W̃T [W + g(X)]− = 0, W̃Tg(x∗) ≤ 0, W∗T [W +
g(X)]− ≤ 0 and W∗Tg(x∗) = 0, one has

W̃T
([

W + g(X)
]− − g(X) + (∇G(X))T(

X − x∗))

≥ W̃T(
g
(
x∗) − g(X) + (∇G(X))T(

X − x∗))

≥ 0

where the second inequality results from the convexity of gi.
Similarly, we also have

W∗T
([

W + g(X)
]− − g(X) + (∇G(X))T(

X − x∗)) ≥ 0.

Moreover, by KKT condition (5), we know (X̄−x∗)T(�(x∗)−
cY∗ + ∇G(x∗)W∗) ≥ 0, together with the fact that (X −
x∗)T(�(X) − �(x∗)) ≥ μ‖X − x∗‖2, from (18), it follows
that:

V̇(Z, t) ≤ αt
(
X̄ − x∗)T(

X̄ − X + �(X) − H̄c + ∇G(X)W̃
)

+ αt
(
X̄ − x∗)T(

H̄c − c
(
Y − cTX + d

))

+ αt
(
X̄ − X

)T
(
�̃ − �(X)

)

− αt‖X̄ − X‖2 − αt

2

∣
∣cTX − d

∣
∣2

− αt

2
‖W − W̃‖2 − μαt‖X − x∗‖2. (19)

Since � is compact, there must exist positive numbers σ such
that ‖X̄ − x∗‖ ≤ σ . In the projection inequality (1) of Lemma
1, letting K = �, u = X − �̄ + H̄c − ∇G(X)W̃ and v = x∗,
we have

(
X̄ − x∗)T(

X̄ − X + �(X) − H̄c + ∇G(X)W̃
)

= (
X̄ − x∗)T(

X̄ − X + �̄ − H̄c + ∇G(X)W̃
)

+ (
X̄ − x∗)T(

�(X) − �̄
)

≤ (
X̄ − x∗)T(

�(X) − �̄
)

≤ σ‖�(X) − �̄‖. (20)

Furthermore, using Young’s inequality, we have

‖X̄ − X‖‖�̃ − �(X)‖
≤ ε

2
‖X̄ − X‖2 + 1

2ε
‖�̃ − �(X)‖2

≤ ε

2
‖X̄ − X‖2 + (n − 1)γ 2

2ε
‖X − x∗‖2 (21)

where ε is a positive constant such that ([(n − 1)γ 2]/2μ) <

ε < 2 and the second inequality results by using the Lipschitz
continuity in Assumption 2. Denoting ρ1 = 1−(ε/2) and ρ2 =
μ − ([(n − 1)γ 2]/2ε), it is obvious that ρ1, ρ2 > 0. Define
e = [eT

1 , . . . , eT
n ]T , where ei is defined as (8) for any i ∈ V , and

reusing the Lipschitz continuity, we have ‖�(X)−�̄‖ ≤ γ ‖e‖.
Note H̄c − c(Y − cTX + d) ≤ ‖c‖2‖e‖, and submitting (20)
and (21) to (19) yields

V̇(Z, t) ≤ −ρ1αt‖X̄ − X‖2 − αt

2

∣
∣cTX − d

∣
∣2 − αt

2
‖W − W̃‖2

− ρ2αt‖X − x∗‖2 + ρ3αt‖e‖ (22)

where ρ3 = σ(γ + ‖c‖2). The term ρ3αt‖e‖ can viewed as a
perturbation. By 3) in Lemma 4, we have

∫ ∞
0 αt‖e‖dt < ∞.

Now, we denote function h(t) = ρ3
∫ t

0 αs‖e(s)‖ds, and it is

obvious that h(t) is nondecreasing with respect to t. Together
with the fact that h(t) is upper bounded, we know h(t) con-
verges. Integrating both sides of inequality (22) over [0, t]
yields

V(Z(t), t) ≤ −ρ1

∫ t

0
αs‖X̄ − X‖2ds + V(Z(0), 0)

−
∫ t

0

αs

2
|cTX − d|2ds −

∫ t

0

αs

2
‖W − W̃‖2ds

− ρ2

∫ t

0
αs‖X − x∗‖2ds + h(t)

< ∞. (23)

For any 0 ≤ t1 ≤ t2, based on (23), it holds

V(Z(t2), t2) − V(Z(t1), t1) ≤ h(t2) − h(t1)

which implies

lim sup
t→∞

V(Z(t), t) − lim inf
t→∞ V(Z(t), t)

≤ lim sup
t→∞

h(t) − lim inf
t→∞ h(t)

= 0.

Thus, V(Z(t), t) converges and V(Z(∞),∞) exists.
Furthermore, from (23), it follows that:

ρ1

∫ ∞

0
αs‖X̄ − X‖2ds +

∫ ∞

0

αs

2

∣
∣cTX − d

∣
∣2

ds

+
∫ ∞

0

αs

2
‖W − W̃‖2ds + ρ2

∫ ∞

0
αs‖X − x∗‖2ds

< ∞.

Due to the fact
∫ ∞

0 αtdt → ∞, we have

lim inf
t→∞

(
ρ1‖X̄ − X‖2 + 1/2

∣
∣cTX − d

∣
∣2

+ 1/2‖W − W̃‖2 + ρ2‖X − x∗‖2
)

= 0.

Hence, there exists a subsequence {tk} such that limk→∞{‖X̄−
X‖}t=tk = 0, limk→∞ |cTX(tk) − d| = 0, limk→∞ ‖W(tk) −
W̃(tk)‖ = 0, and limk→∞ ‖X(tk) − x∗‖ = 0. Thus, KKT
condition (3) in Lemma 2 is satisfied. We have

⎧
⎨

⎩

limk→∞ X(tk) = x∗
limk→∞ Y(tk) = y0
limk→∞ W(tk) = W0

for some y0 ∈ Y
∗ and W0 ∈ W

∗. If we set y∗ = y0
and W∗ = W0, by the convergence of V(Z, t), we know
limt→∞ V(Z(t), t) = 0, which implies limt→∞ ‖X − x∗‖ = 0,
limt→∞ |Y − y∗| = 0, and limt→∞ ‖W − W∗‖ = 0. By 1)
and 2) in Lemma 4, we have limt→∞ ‖xi − x∗‖ = 0 and
limt→∞ |yi − y∗| = 0 for any i ∈ V . This leads to the validity
of the result.

Remark 3: When player i updates the value of yi(t) by using
algorithm (6), the number of agents is utilized. It means that
players need to know information associated with the scale
of the network, which may prevent the proposed algorithm
from being fully distributed. In fact, for a connected undi-
rected multiagent network, it is not difficult to check the value
of n by using little global information. For example, we arbi-
trarily choose an agent’s initial state to be 1, and set others’
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to be 0. Using the average-consensus algorithm in [6], we
know all agents’ states converge to 1/n, which helps each one
achieve the number of agents. In many practical applications,
parameter d can also be propagated to each individual through
a connected multiagent network. For example, in the eco-
nomic dispatch of distributed power system [50], d represents
the total load of the power network and it can be measured
by each individual in a distributed manner. Moreover, total
resource d is usually determined by local demands, that is,
d = ∑n

i=1 di [27]. In fact, based on the proof of Theorem 1,
we know that the results still hold if d = ∑n

i=1 di and the term
d/n in (6) is replaced by di. Using local information associ-
ated with di, rather than d/n, can further reduce the required
global information in implementing algorithm (6).

Remark 4: Based on the proof of Theorem 1, here we
analyze the convergence rate of algorithm (6) by choosing
αt = [1/(t + 1)]. To do this, it suffices to analyze the decay-
ing rate of the deviation of actions from the GNE. We use a
weighted squared error to reflect this, which is defined as

D(t) =
∫ t

0 ατ‖X(τ ) − x∗‖2dτ
∫ t

0 ατ dτ

.

Based on (10) and (12), there is

∫ t

0
ατ‖e(τ )‖dτ ≤ n2mα0 max

1≤i≤n
‖ei(0)‖

∫ t

0
λτ

+ 2n2mK
∫ t

0
ατ

∫ τ

0
αθλ

(τ−θ)dθ dτ

≤ n2m
(
α0 max1≤i≤n ‖ei(0)‖ + 2K

)

−lnλ
(24)

where K and λ are defined in (10). By (24), we have h(t) ≤ �.
Let � = ([n2mρ3(α0 max1≤i≤n ‖ei(0)‖ + 2K)]/−lnλ); on the
basis of (23), we can conclude that

D(t) ≤ V(Z(0), 0) + h(t)

ρ2ln(t + 1)

≤ V(Z(0), 0) + �

ρ2ln(t + 1)
(25)

which implies that the convergence rate of algorithm (6) is
proportional to 1/ln(t + 1).

IV. SIMULATIONS

In this section, we consider a game with six players to illus-
trate the obtained results, the index set of players is denoted by
V = {1, . . . , 6}. The players communicate with each other via
a connected graph depicted in Fig. 1, where the weight of each
edge is set to be one. Players in the game intend to selfishly
minimize their own cost function subject to some constraints.
Each player’s cost function in the game is given by

Ji = Tii‖xi‖2 +
6∑

j=1,j �=i

Tijx
T
i xj, i ∈ V

Fig. 1. Communication graph G(A).

where T = (Tij)6×6

T = 10−3 ×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

75 82 −65 38 −56 42
−82 67 −15 72 26 −18
65 15 80 53 −64 43

−38 −72 −53 72 −92 28
56 −26 64 92 60 −19

−42 18 −43 −28 19 70

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and xi = [xi
1, xi

2]T ∈ R
2. Noting that T is an antisymmetric

matrix, it is not difficult to verify that the conditions asso-
ciated with strong monotonicity and Lipschitz continuity in
Assumption 2 are satisfied. And compact action sets are given
by �1 = {0 ≤ x1

1 ≤ 3, 1 ≤ x1
2 ≤ 2}, �2 = {1 ≤ x2

1 ≤ 4, 0 ≤
x2

2 ≤ 2}, �3 = {0.5 ≤ x3
1 ≤ 2.5, 3 ≤ x3

2 ≤ 4}, �4 = {0 ≤ x4
1 ≤

1, 0.5 ≤ x4
2 ≤ 1.5}, �5 = {1.5 ≤ x5

1 ≤ 3, 0.5 ≤ x5
2 ≤ 2}, and

�6 = {0 ≤ x6
1 ≤ 4, 1 ≤ x6

2 ≤ 6}. The coupled constraint is
given by an equation h = cx − d = 0 and private constraints
are given by gi = aT

i xi − bi ≤ 0, i = 1, . . . , 6. To ensure the
solutions in �1 × · · · × �n to be nonempty, we choose the
following parameters: c = 10−2 × [4,−10, 2, 2,−4, 2, 6,−2,

4,−2,−6, 24]T and d = 0.26; a1 = [10,−30]T , a2 =
[− 40, 10]T , a3 = [20,−5]T , a4 = [10,−10]T , a5 =
[20,−10]T , a6 = [0, 10]T , b1 = b3 = −10, b2 = 10,
b4 = b5 = b6 = 20. It is obvious that each gi is linear;
thus, it satisfies the condition associated with the convexity
of gi in Assumption 1. Together with the fact that Ji is con-
vex in xi, and �i is convex and compact for any i ∈ V , the
conditions in Assumption 1 are satisfied. Hence, under the
aforementioned parameters, all conditions in Assumption 1–3
are satisfied, which means the conditions in Theorem 1 are
satisfied. In the following text, we aim to verify that if players
make decisions by implementing a distributed algorithm (6),
then their actions converge to a GNE of the game eventually.

Algorithm (6) is applied to searching a GNE located in the
action sets. We set αt = [1/(0.07t + 0.01)], which satisfies (7).
Let the initial states be x1(0) = [0.5, 1.5]T , x2(0) = [1.5, 1]T ,
x3(0) = [1, 3.5]T , x4(0) = [1, 1.5]T , x5(0) = [2, 1]T , x6(0) =
[1, 1.5]T , y1 = 0.4, y2 = 0.5, y3 = 0.7, y4 = 0.8, y5 = 0.2,
y6 = −0.4, and ωi(0) = 0 and xij(0), ∀i �= j, i, j ∈ V is
randomly chosen from 0 to 1. For i ∈ V , we denote

Qi(t) = ‖xi − P�i

[
xi(t) − (∇xiJi(xi(t))

− Y(t)ci + ωi(t)ai)]‖
Ri(t) = ωi(t) − [

ωi(t) + aT
i xi(t) − bi

]+
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Fig. 2. Trajectories of ‖ei(t)‖, i = 1, . . . , 6.

Fig. 3. Trajectories of yi(t), i = 1, . . . , 6.

Fig. 4. Trajectory of h(t).

and

h(t) = cx(t) − d

where Y(t) = (1/6)
∑6

i=1 yi(t). Under algorithm (6), the tra-
jectories of ‖ei‖, i ∈ V , defined as (8), are shown in Fig. 2,
from which we know as t → ∞, each xi(t) defined in (6)
asymptotically converges x(t) = (xi(t), x−i(t)). Together with
the results in [40] and [41], which are summarized in Lemma
2, we know that xi is the GNE if h = 0, Qi = 0, and
Ri = 0 for any i ∈ V . By (6), the trajectories of play-
ers’ estimates on the Lagrangian multiplier associated with
the coupled equation constraint are shown in Fig. 3, from

Fig. 5. Trajectories of Qi(t), i = 1, . . . , 6.

Fig. 6. Trajectories of Ri(t), i = 1, . . . , 6.

which we know they reach a common point after a period
of time. Figs. 4–6 show the trajectories of h, Qi, and Ri,
respectively, from which we know Qi(t) → 0, h(t) → 0,
and Ri(t) → 0 after a period of time. Thus, (xT

1 , . . . , xT
6 )

converges to a GNE (x∗T
1 , . . . , x∗T

6 ) of the game. It is com-
puted that x∗

1 = [0, 1.09]T , x∗
2 = [1, 0.71]T , x∗

3 = [0.5, 4]T ,
x∗

4 = [1, 1.5]T , x∗
5 = [1.5, 1]T , and x∗

6 = [0.92, 1.08]T .
These observations are consistent with the results established
in Theorem 1.

V. CONCLUSION

In this paper, we have presented a continuous-time DGP
algorithm for searching a GNE of noncooperative games with
feasible action sets constrained by private inequalities and cou-
pled equations. By implementing the algorithm, each player
makes decisions by using the information associated with its
own cost function, its own private constraint and the coupled
constraint, its own action, and actions and estimates received
from its neighbors. The convergence of the continuous-time
nonlinear DGP algorithm has been proved by using convex
analysis theory, consensus theory, and Lyapunov stability the-
ory. The result shows that if the communication graph is
connected by the proposed continuous-time DGP algorithm,
all players’ actions asymptotically converge to a GNE of the
game. A simulation example has been conducted to demon-
strate the effectiveness of our results. How to completely
avoid using the global information and how to reduce the
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communication costs are two difficult problems in searching
a GNE of noncooperative games over a network of players,
which will be considered in our future work.
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