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Abstract

This paper investigates the fuel-optimal guidance problem of the end-to-end human-Mars entry, powered descent, and landing

(EDL) mission. It applies a unified modeling scheme and develops a computationally efficient new optimization algorithm to solve

the multi-phase optimal guidance problem. The end-to-end EDL guidance problem is first modeled as a multi-phase optimal control

problem with different dynamics and constraints at each phase. Via polynomial approximation and discretization techniques, this

multi-phase optimal control problem is then reformulated as a polynomial programming problem. By introducing intermediate

variables and quadratic equality constraints, a polynomial program is equivalently converted into a nonconvex quadratically

constrained quadratic program (QCQP). Then, a novel customized alternating direction method of multipliers (ADMM) is proposed

to efficiently solve the large-scale QCQP with convergence proof to a local optimum under certain conditions on the algorithmic

parameters. The fuel savings under the end-to-end human-Mars EDL guidance are verified by comparing to the fuel consumption

using the separate phase guidance approach. Furthermore, the computational efficiency of the customized ADMM algorithm is

validated by comparing to the state-of-the-art nonlinear programming method. The robustness of the customized ADMM algorithm

is verified via extensive simulation cases with random initial conditions.

Index Terms
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A human-Mars mission requires the delivery of a payload from the entry interface at hypersonic speed to a preflight-

designated surface location at near-zero speed with pinpoint precision, defined as landing within one hundred meters of the

location [1]. Unlike past robotic landing missions, the predicted mass of a human-scale entry vehicle will increase at least

an order of magnitude. For example, the entry vehicle in Mars Science Laboratory Mission weighs around 2,400 kg [2]. In

contrast, the designed vehicles for human-scale Mars landing mission weigh over 50 tons [3]. As a result, the entry vehicle has

to fly with a higher L/D ratio and then powered-descent will replace parachute in robotic landing mission to achieve precise

landing by generating retro-thrusts at supersonic speed to decelerate the human-scale landers [4].
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In the past decades, guidance methods for EDL missions have gained extensive development, with some of them implemented

in successful flight tests. While great success for small-scale robotic landing missions has been achieved, a human-Mars EDL

mission is very different in scale, operation, and challenges [1], [5], [6]. First, few efforts pay attention to optimizing the entry

phase guidance maneuvers that lead to an ideal initial condition for the powered descent operation. Moreover, the existing

literature generally focuses on generating guidance commands separately at each phase instead of planning the entire mission

as a whole [7]. Practically, control of aerodynamic forces will improve the deceleration capability of the entry vehicle, which

benefits fuel saving during the following powered descent phase. Existing entry guidance algorithms are traditionally tailored

to the L/D ratio of the vehicle, including high L/D [8], [9], mid to low L/D [10], [11], and others [12], [13], [14]. A unified

guidance method has been developed for a wide range of entry vehicles with varying lifting capabilities [15]. However, few

of these works consider how to optimize entry guidance maneuvers to minimize fuel consumption in the following powered

descent phase and also improve the landing accuracy. Thus, an entry trajectory that is optimized via modulations of aerodynamic

forces to provide an ideal initial condition of the powered descent phase holds potential to further reduce the fuel consumption

and consequently the mass of the landing vehicle needed for the mission.

Both direct and indirect optimization methods have been developed to solve EDL related problems. The indirect methods need

to simplify the vehicle dynamics under certain assumptions to generate onboard trajectories with much reduced computational

loads [16], [17], [18], [19], [20]. When complicated inequality/equality constraints are considered, indirect methods are not

applicable to those EDL missions. Nonlinear programming (NLP), e.g., sequential quadratic programming [21], [22], [23],

[24], classified as a direct method, has been applied to solve entry and supersonic gliding problems, where a continuous-time

optimal control problem is converted into a parameter optimization problem via discretization. With nonconvexity involved

in the objective or constraints or both, convergence to an optimal solution cannot be guaranteed from NLP, and it generally

requires a good initial guess of the unknown variables. Recent efforts have applied second order cone programming to solve both

entry and powered descent problems by combining successive linearization and relaxation techniques to generate optimization-

based guidance commands [25], [26], [27]. In addition, work in [28] combined the pseudospectral optimal control and convex

optimization for the powered descent and landing problem.

In this paper, the two dimensional (2D) end-to-end EDL mission will be considered and an advanced guidance method for

both fuel-optimal and precise landing will be developed. Specifically, the EDL problem is modeled as a multi-phase optimal

control problem with varying dynamics and constraints at each phase. To solve this challenging problem, a computationally

efficient modeling scheme is developed to convert the EDL guidance problem at each phase into a unified representation.

Then an implementable and convergent optimization algorithm is designed. Firstly, all non-polynomial functions, e.g., the

atmosphere density model, are approximated by continuous or piece-wise continuous polynomials. Then, via the discretization

techniques, the EDL problem of each phase is reformulated as a polynomial programming problem. By introducing extra

variables and quadratic constraints, every polynomial program can be expressed as an equivalent nonconvex quadratically

constrained quadratic programming (QCQP) problem [29].

It is known that a QCQP is equivalent to a linear matrix programming problem by introducing a to-be-determined rank-one

matrix [30], [31]. Due to the nonconvex and nonlinear nature of the rank-one constraint, the converted problem is still NP-hard
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[31]. Extensive relaxation methods have been developed to find a lower bound on the objective value of a QCQP, which are not

guaranteed to yield a feasible solution [32], [33], [34]. The alternating direction method of multipliers (ADMM) is a well-known

sequential algorithm that divides the unknown variables into two sets and solves them separately in an alternative sequence

when solving both sets jointly is more complicated. The fundamental principle of ADMM is to formulate the augmented

Lagrangian and then find the first order conditions of optimality for the two unknown sets in an alternating sequence, followed

by updating the Lagrange multipliers associated with equality constraints [35], [36]. Convergence has been proven for ADMM

in some special nonconvex optimization problems [37], [38].

Motivated by the advantages of ADMM, we divide variables in QCQPs into two sets and solve them separately in an

alternating sequence. The customized ADMM significantly reduces the computational efforts required to solve every iterative

problem, which is applicable to the large-scale EDL problem. Our prior work in [39], [40] has developed an implementable

optimization algorithm based on ADMM to solve nonconvex QCQPs. In this paper, we further improve the computational

performance in terms of convergence and reduce the computational complexity by using a set of switching functions to

represent the quadratic inequalities in a QCQP, which does not require using the slack variables associated with inequalities.

Compared with our former work of end-to-end EDL guidance presented in [40], this paper extends our former work from

three aspects: (i) A more precise model for the entry dynamics is applied in this paper, which considers the quadratic relationship

between the lift and drag coefficients instead of the linear one used in [40]. In addition, a new normalization scale is applied

to the entry dynamics to improve the numerical accuracy of the converged results from the customized ADMM. (ii) For the

proposed customized ADMM, a rigorous convergence proof is provided based on mild conditions on algorithmic parameters.

(iii) In the simulation section, robustness analysis of the proposed algorithm is presented through extensive simulation cases.

The main contributions of this paper can be summarized as follows:

• The end-to-end EDL guidance problem for human Mars mission is modeled as a multi-phase optimal control problem

with different dynamics and constraints in each phase. To our best knowledge, it is the first time that the entry phase

guidance and the powered descent phase guidance are combined as an integrated problem to increase the flexibility when

searching for an optimal solution for the entire EDL guidance problem. The benefits on fuel-saving of the end-to-end

formulation are verified by simulations comparing to the separate phase guidance strategy.

• To handle the large-scale multi-phase optimal control problem, we apply a unified modeling scheme to convert the

nonlinear end-to-end EDL guidance problem into a nonconvex QCQP via polynomial approximation and discretization,

which reduces the non-linearity and complexity of the original problem formulation.

• We propose a new customized ADMM to solve large-scale nonconvex QCQPs, where inequality constraints are represented

by switching functions. Moreover, the convergence proof of the customized ADMM under certain conditions on the

algorithmic parameters is provided. The computational efficiency of the customized ADMM is validated via comparative

simulation results from a commercial NLP solver. Furthermore, the robustness of the customized ADMM is validated via

extensive simulation cases.

This paper is organized as follows. §I introduces the formulation of the end-to-end human-Mars EDL mission as a multi-phase

optimal control problem and the transformation from the optimal control problem into a homogeneous QCQP. §II presents
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the framework and convergence analysis of the customized ADMM to search for the optimal solution of general nonconvex

QCQPs. In §III, numerical results for the separate phase guidance and the end-to-end guidance problems, comparative results

from an NLP solver, and robustness analysis of the customized ADMM are provided. Conclusions are presented in §IV.

I. PROBLEM FORMULATION

In human-Mars missions, the vehicle is required to deorbit, enter, descend and land softly at a specific mission site with

high precision. The entire EDL mission can be divided into two major phases, an entry phase and a powered descent phase. In

this section, the formulation of the optimal guidance problems for both phases are presented separately and then integrated into

an entire fuel-optimal EDL guidance problem subject to dynamic constraints, mission constraints, and continuity constraints

between these two phases. By applying the discretization technique and introducing additional variables, the fuel-optimal EDL

guidance problem is converted into a nonconvex QCQP problem. This uniform modeling scheme can be applied to general

multi-phase mission planning problems as well as the three-dimensional EDL guidance problems.

A. Optimal Guidance for the Entry Phase

In the entry phase, the motion of a point-mass entry vehicle is usually described in a Cartesian coordinate system with the

origin of the coordinate located at the center of Mars. The two degree of freedom (2-DoF) dimensionless equations of motion

for the entry vehicle over a spherical non-rotating Mars are expressed as

Ṙ = V sin γ,

V̇ = −D − sin γ

(Rh0/Rm)2
,

γ̇ =
1

V

(
L+ V 2 cos γ

R
− cos γ

(Rh0/Rm)2

)
,

(1)

where R is the radial distance between the entry vehicle and the Mars center, V is the vehicle speed, and γ is the relative

flight path angle, Rm is the radius of Mars. In the above dimensionless formulation, length is normalized by h0 = 100 km,

and time is normalized by
√
h0/g0 (g0 = 3.711 m/sec2 is the gravity acceleration of Mars). Accordingly, the speed term is

normalized by
√
h0g0. D and L are the normalized aerodynamic drag and lift, respectively, defined by

D =
1

2
SρCDV

2, (2a)

L =
1

2
SρCLV

2, (2b)

where ρ is the Mars atmosphere density, determined by a nonlinear function of altitude, S is the reference area of the entry

vehicle, CD and CL are the aerodynamic drag and lift coefficients. Note that, ρ is normalized by m0

h0
, where m0 is the initial

mass of the entry vehicle. In this paper, we assume that CD = cd0 + cd1CL+ cd2C
2
L holds for the entry vehicle, where cd0 , cd1

and cd2 are the constant coefficients. During the entry phase, CL is handled as the control variable. Moreover, three types of

trajectory constraints are considered during the entry phase.

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 10,2022 at 02:50:10 UTC from IEEE Xplore.  Restrictions apply. 



0018-9251 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2022.3141325, IEEE
Transactions on Aerospace and Electronic Systems

JOURNAL OF IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL., NO., 5

1) Stagnation-point convective heating load constraint:

Q̇ = kQ

√
ρ

Rnose
V 3.15 ≤ Q̇max, (3)

where Rnose is the nose radius of the vehicle, kQ is a constant depending on the composition of the Martian atmosphere,

Q̇max denotes the allowable peak heating rate. This inequality constrains the heating rate at a stagnation point on the

surface of the vehicle with a curvature radius Rnose [15].

2) Dynamic pressure constraint:

q̄ =
g0m0ρV

2

2
≤ q̄max, (4)

where q̄max is the allowable peak dynamic pressure.

3) Normal load constraint:

√
L2 +D2 ≤ nmax, (5)

where nmax is the allowable normal load on the surface of the entry vehicle.

At the end of the entry phase, the entry vehicle is required to descend to an altitude within a specified range. The optimal

guidance problem for the entry phase is expressed as

min
CL,tI

V (tI) , (6)

subject to Ṙ = V sin γ,

V̇ = −D − sin γ

(Rh0/Rm)2
,

γ̇ =
1

V

(
L+ V 2 cos γ

R
− cos γ

(Rh0/Rm)2

)
,

Q̇ = kQ

√
ρ

Rnose
V 3.15 ≤ Q̇max,

q̄ =
g0m0ρV

2

2
≤ q̄max,√

L2 +D2 ≤ nmax,

D =
1

2
SρCDV

2,

L =
1

2
SρCLV

2,

CD = cd0 + cd1CL + cd2C
2
L,

R(t0) = R0, V (t0) = V0, γ(t0) = γ0,

RLI ≤ R(tI) ≤ RUI ,

where tI is the time at the end of the entry phase and it is unknown, and RLI and RUI are the lower and upper bounds on the

terminal radius, respectively. The objective function during the entry phase is the final speed since a smaller speed at the end

of the entry phase is supposed to require less propellant during the powered descent phase to decelerate the vehicle to zero
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speed. After the entry phase, the retro-propulsion system will be ignited to start the powered descent phase.

B. Fuel-Optimal Guidance for the Powered Descent Phase

In the powered descent phase, the vehicle will be decelerated by using a retro-propulsion system and land at a preflight-

designated site on the Mars surface with near-zero speed. To simplify the expression, the equations of motion during the powered

descent phase are analyzed in a Cartesian coordinate system with its origin fixed at a point on the Mars’ surface. Without

loss of generality, we assume the origin of the Cartesian coordinate is located at the landing point. The 2-DoF dimensionless

dynamic equations during the powered-descent phase is expressed as

ṙ = v, (7a)

v̇ = g +
T

m
, (7b)

ṁ = −η‖T‖2, (7c)

where r = [x, z]T is the position vector of the landing vehicle, v = [vx, vz]
T denotes the velocity vector, g = [0,−g0]T is

the gravity acceleration vector, T = [Tx, Tz]
T denotes the thrust vector, m is the landing vehicle mass, and η represents the

specific exhaust velocity of the rockets, which is assumed to be a constant. In the above dimensionless formulation, length

is normalized by 1000 m, velocity is normalized by 100 m/sec, and mass is normalized by 1000 kg. As a result, time is

normalized by 10 sec, acceleration is normalized by 10 m/sec2, and thrust is normalized by 10000 N. The magnitude of thrust

T during the powered descent phase is bounded by

Tmin ≤ ‖T(t)‖2 ≤ Tmax, ∀t ∈ [tI , tf ], (8)

where tI is the time at the end of the entry phase, which also denotes the rocket ignition time, i.e. the starting time of the

powered descent phase, and tf is the final time at the end of the mission. Due to the limited fuel, the constraint on the vehicle

mass is expressed as

m(tI) = mpdi, m(tf ) ≥ mdry, (9)

where mpdi is the gross mass of the vehicle at the beginning of the powered descent phase, and mdry is the structural mass.

Meanwhile, to prevent the landing vehicle from impacting the Mars surface before landing, a glide-slope constraint is considered

for the powered-descent trajectory, which is expressed as

r ∈ C :=

{
r ∈ R2 :

r · e
‖r‖‖e‖

≥ cos θ

}
, (10)

where e is a unit vector along the z axis and θ is the maximum glide-slope angle. As the aerodynamic forces are generally

much smaller than the thrust generated by the retro-propulsion system during the powered descent phase, the aerodynamic

effects during the powered descent phase are ignored. Then the fuel-optimal guidance problem for the powered descent phase
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is expressed as

min
T,tf

∫ tf

tI

ṁ dt (11)

subject to ṙ = v,

v̇ = g +
T

m
,

ṁ = −η‖T‖2,

Tmin ≤ ‖T‖2 ≤ Tmax, ∀t ∈ [tI , tf ],

r ∈ C :=

{
r ∈ R2 :

r · e
‖r‖‖e‖

≥ cos θ

}
,

m(tI) = mpdi, m(tf ) ≥ mdry,

r(tI) = r0, v(tf ) = v0.

r(tf ) = 0, v(tf ) = 0.

For the optimal guidance of both phases that leads to a fuel-optimal and precise landing, a multi-phase optimal control problem

is described below including dynamics and constraints described for each phase and additional constraints to guarantee a smooth

transition from one phase to the other.

C. Fuel-Optimal Guidance for End-to-End Human-Mars EDL Mission

When considering the 2D end-to-end EDL mission, the ending point of the entry phase is the starting point of the powered

descent phase. Therefore, continuity constraints on position and velocity are imposed on the transition point, expressed as

r(tI) · e = (R(tI)h0 −Rm)/1000, (12a)

v(tI) =
[
V (tI)

√
h0g0 cos γ/100, V (tI)

√
h0g0 sin γ/100

]T
. (12b)

Combining the two guidance problems in (6) and (11) and the continuity constraints, the multi-phase fuel-optimal EDL

guidance problem is summarized as

min
CL,T,tI ,tf

∫ tf

tI

ṁ dt (13)

subject to Ṙ(t) = V sin γ, ∀t ∈ [t0, tI ],

V̇ = −D − sin γ

(Rh0/Rm)2
,

γ̇ =
1

V

(
L+ V 2 cos γ

r
− cos γ

(Rh0/Rm)2

)
,

ṙ = v, v̇ = g +
T

m
, ṁ = −η‖T‖2, ∀t ∈ [tI , tf ],

CD = cd0 + cd1CL + cd2C
2
L,

Q̇ = kQ

√
ρ

Rnose
V 3.15 ≤ Q̇max,

q̄ =
g0m0ρV

2

2
≤ q̄max,
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√
L2 +D2 ≤ nmax, ∀t ∈ [t0, tI ],

Tmin ≤ ‖T‖2 ≤ Tmin, r ∈ C, ∀t ∈ [tI , tf ],

R(t0) = R0, V (t0) = V0, γ(t0) = γ0,

RLI ≤ R(tI) ≤ RUI , r(tf ) = 0, v(tf ) = 0,

tf ≤ tmax, m(tI) = mpdi, m(tf ) ≥ mdry,

r(tI) · e = (R(tI)h0 −Rm)/1000,

v(tI) =
[
V (tI)

√
h0g0 cos γ/100, V (tI)

√
h0g0 sin γ/100

]T
,

where tmax is the maximum duration of the entire EDL mission. By integrating the entry and powered descent phases, the

end-to-end EDL guidance problem will determine the transition point between the two phases, as well as the optimal guidance

laws and duration for each phase, which provides more flexibility in planning the entire mission.

The end-to-end EDL guidance problem in (13) is a multi-phase nonlinear optimal control problem subject to complicated

dynamical and mission constraints. Furthermore, the duration of each phase and transition point between phases are unknown.

Solving this nonconvex problem directly is computationally difficult. Therefore, we will first reformulate (13) as a polynomial

optimal control problem by approximating all non-polynomial functions, e.g., the atmosphere density model, using continuous

polynomials. Then the end-to-end EDL guidance problem will be reformulated as a polynomial programming problem via

discretization.

D. Conversion into a Polynomial Optimal Control Problem

In the end-to-end EDL guidance problem formulated in (13), there are several non-polynomial functions, including trigono-

metric functions, e.g., sin γ and cos γ, in the entry phase dynamics, and exponential functions in the heating load constraint

and the atmosphere density model. The conversion of these non-polynomials into polynomials using approximate functions is

presented below.

1) Mars atmosphere density model: Based on the Mars atmosphere model in [41], the atmosphere model is divided into

two zones with different curves, the low altitude atmosphere curve and the high altitude atmosphere curve. The entry phase

is defined at a high altitude ranging from 7,000 meters to the boundary of the Mars atmosphere which is at the altitude of

110,000 meters. Then, only the high altitude atmosphere model is considered during the entry phase. For the high altitude

atmosphere model, the temperature decreases linearly and the pressure decreases exponentially, expressed as

ρ =
Ppressure

0.1921 (Ttemp + 273.1)
, (14)

where Ppressure and Ttemp are the atmosphere pressure and temperature, respectively. Moreover, the curve fitting results for Ppressure

and Ttemp with respect to the altitude h = Rh0−Rm are written as Ttemp =−31−0.000998h, Ppressure =0.699 exp (−0.00009h) .

Finding a polynomial curve to fit ρ with respect to h according to (14) is straightforward. The classical curve fitting method,

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 10,2022 at 02:50:10 UTC from IEEE Xplore.  Restrictions apply. 



0018-9251 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2022.3141325, IEEE
Transactions on Aerospace and Electronic Systems

JOURNAL OF IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL., NO., 9

such as the least square method, can find a polynomial function directly. However, using a polynomial to directly fit (14)

will result in negative values at some points of the approximate air density function. Thus, (14) is firstly approximated by an

exponential function, expressed as

ρ = ŵ1 exp (ŵ2 · h) , (15)

where ŵ1 and ŵ2 denote the curve fitting parameters. Then (15) is further approximated using the Taylor series expansion to

fit the exponential function in (15), written as

ρ = ŵ1

∞∑
n=0

(ŵ2 · h)n

n!
, (16)

In this paper, we use a 6th (n = 6) order polynomial function to approximately represent the atmosphere density. The curve

fitting result and the residuals are shown in Fig. 1.

(a) Polynomial approximation for
air density

(b) Residuals of the fitting curve

Fig. 1: Polynomial curve fitting of the atmosphere density model

2) Heating load constraint: The non-polynomial heating load constraint in (3) can be equivalently rewritten as

V ≤ 3.15

√
Q̇max

kQ
√
ρ/Rnose

:= Vmax. (17)

Since ρ is expressed as a function of h in (16), Vmax can be approximated as

Vmax(h) ≈
nl∑
i=0

ωih
nl , (18)

where ωi, i = 0, 1, . . . , nl, are the coefficients of the fitting polynomial. Let nl = 4 in (18), the approximated results are shown

in Fig. 2. Then, the heating rate constraint can be replaced by

V ≤ ω0 + ω1 · h+ ω2 · h2 + ω3 · h3 + ω4 · h4. (19)

3) Normal load constraint: The non-polynomial normal load constraint in (5) can be equivalently reformulated as√(
1

2
CLSρV 2

)2

+

(
1

2
CDSρV 2

)2

≤ nmax. (20)

By denoting CA =
√
C2
L + C2

D, the normal load constraint can be replaced by

1

2
CASρV

2 ≤ nmax. (21)
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(a) Polynomial fitting for Vmax (b) Fitting residuals for Vmax

Fig. 2: Polynomial fitting results for Vmax

4) Trigonometric functions in entry phase dynamics: There are nonlinear sinusoidal/cosinusoidal functions of the flight path

angle, γ ∈ [−π2 ,
π
2 ], in the entry phase dynamic constraints. Let a = sin γ, b = cos γ, then a2 + b2 = 1. As γ is the flight-path

angle and γ ∈ [−π2 ,
π
2 ], we have

γ = arcsin a, γ̇ =
1√

1− a2
ȧ =

ȧ

b
, (22)

Thus, the dynamic equations in (1) are equivalent to

Ṙ = V · a, (23a)

V̇ = −D − a

(Rh0/Rm)2
, (23b)

ȧ =
b

V

(
L+ V 2 · b

R
− b

(Rh0/Rm)2

)
. (23c)

With the conversions in (16), (18), and (23), the EDL guidance problem in (13) can be reformulated as a polynomial optimal

control problem. Via discretization, a polynomial optimal control problem can be converted into a polynomial programming

problem. By introducing extra variables and quadratic constraints, every polynomial programming problem can be expressed

as an equivalent nonconvex QCQP [29]. The discretization and conversion steps are detailed below.

E. Discretization and Conversion into QCQP

We first discretize the trajectories in the entry phase and powered descent phase into N1 > 0 and N2 > 0 intervals,

respectively, shown in Fig. 3. The equations of motion of the entry phase are then approximated by the Euler integration

scheme, expressed as

Ri+1 −Ri
∆t1

= Viai, (24a)

Vi+1 − Vi
∆t1

= −1

2
CDi

SρiV
2
i −

ai
(Rih0/Rm)2

, (24b)

ai+1 − ai
∆t1

=
bi
Vi

(
1

2
CLi

SρiV
2
i +

V 2
i bi
Ri
− bi

(Rih0/Rm)2

)
,

i = 1, 2, ..., N1 (24c)

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 10,2022 at 02:50:10 UTC from IEEE Xplore.  Restrictions apply. 



0018-9251 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2022.3141325, IEEE
Transactions on Aerospace and Electronic Systems

JOURNAL OF IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL., NO., 11

Fig. 3: Discretized trajectory of multi-phase human-Mars EDL

where ∆t1 = (tI − t0)/N1 is the uniform time step between two adjacent discrete nodes for the entry phase. Next, we denote

δRi =
Ri+1 −Ri

∆t1
, δVi =

Vi+1 − Vi
∆t1

, δpi =
pi

∆t1
,

pi =
(ai+1 − ai) · Vi

bi
, V̂i = V 2

i , ĥi = h2
i , h̃i = h3

i = hi · ĥi,

h̄i = h4
i = ĥ2

i , h̀i = h5
i = h̃i · ĥi, ȟi = h6

i = h̃2
i ,

li =
ai

ĥi + 2hiRm/h0 + (Rm/h0)2
, hi = Ri −

Rm
h0

,

fi = V̂i −
1

Ri(h0/Rm)2
, ei =

bi · fi
Ri

,

qi = V̂iρ = V̂iŵ1

(
1 + ŵ2 · hi +

ŵ2
2 · ĥi
2

+
ŵ3

2 · h̃i
6

)

+ V̂iŵ1

(
ŵ4

2 · h̄i
24

+
ŵ5

2 · h̀i
120

+
ŵ6

2 · ȟi
720

)
(25a)

Using the above intermediate variables, (24) can be rewritten as quadratic constraints, expressed as

δRi = Viai (26a)

δVi = −
(
S

2
CDi

qi + li

)
(26b)

δpi =
S

2
CLiqi + ei (26c)

Meanwhile, the mission constraints in (3)-(5) at every discrete node, i = 1, . . . , N1, for the entry phase can also be rewritten

as quadratic inequalities, expressed as

Vi ≤ ω0 + ω1hi + ω2ĥi + ω3h̃i + ω4h̄i, (27a)

qi ≤
2q̄max

m0g0
, (27b)

1

2
CAiSqi ≤ nmax, C

2
Ai

= C2
Li

+ C2
Di
. (27c)
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Applying the Euler integration rule to the equations of motion in (7) during the powered descent phase, leads to

xj+1 − xj
∆t2

= vxj
,

zj+1 − zj
∆t2

= vzj , (28a)

vxj+1 − vxj

∆t2
=
Txj

mj
,

vzj+1 − vzj
∆t2

=
Tzj
mj
− g0, (28b)

mj+1 −mj

∆t2
= −ηTi, T 2

j = T 2
xj

+ T 2
zj , j = 1, ..., N2, (28c)

where ∆t2 = (tf − tI)/N2 and Ti is the magnitude of thrust vector T. Since tI and tf are unknown, ∆t1 and ∆t2 are to be

determined in the EDL guidance problem. Through above conversions, all dynamics and mission constraints are reformulated

as linear or quadratic equalities/inequalities for both phases. By denoting

X = [R, h, ĥ, h̃, h̄, h̀, ȟ, δR, V, V̂ , δV, a, b, e, f, p, δp, l, q,

CA, CL, CD, x, vx, z, vz,m, Tx, Tz, T,∆t1,∆t2]T ,

the original EDL guidance problem in (13) is now cast as a QCQP, summarized as

min
X
−mN2

(29)

subject to (25) & (26),

(28),

Vi ≤ ω0 + ω1hi + ω2ĥi + ω3h̃i + ω4h̄i,

qi ≤
2q̄max

m0g0
,

1

2
CAiSqi ≤ nmax,

C2
Ai

= C2
Di

+ C2
Li
,

CDi
= cd0 + cd1CLi

+ cd2C
2
Li
,

Tmin ≤ Tj ≤ Tmax,

z2
j ≥ x2

j · cot2(θ),

R1 = R0, V1 = V0,

RLI ≤ RN1 ≤ RUI ,

xN2 = zN2 = 0, vxN2
= vzN2

= 0,

[x1, z1] · e = (RN1
h0 −Rm)/1000,

[vx1
, vz1 ] = [VN1

bN1

√
h0g0/100, VN1

aN1

√
h0g0/100]T ,

where i = 1, . . . , N1 and j = 1, . . . , N2.
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II. A CUSTOMIZED ADMM FOR NONCONVEX QCQPS

A. Customized ADMM Framework

Since a general QCQP can be equivalently formulated as a homogeneous QCQP, we focus on solving the homogeneous

QCQP formulated as

min
x∈Rn

xTQ0x (30)

subject to xTQix = ci, i ∈ E

xTPjx ≤ dj , j ∈ I

where x ∈ Rn is the unknown vector to be determined, Q0 ∈ Rn×n, Qi ∈ Rn×n, i ∈ E , and Pj ∈ Rn×n, j ∈ I are real

symmetric matrices which are not necessarily positive semidefinite. E and I are the indices sets of equality and inequality

constraints, respectively. Due to the indefiniteness of Qi or Pj , problem (30) is generally nonconvex and NP-hard. In order to

solve the nonconvex QCQP, we equivalently transform (30) into a consensus-constrained optimization problem formulated as

min
x,y

xTQ0y (31)

subjecto to xTQiy = ci, i ∈ E

xTPjy ≤ dj , j ∈ I

x = y.

Obviously, with the consensus constraint x = y, problems (30) and (31) are equivalent. Let ν ∈ Rn, µ ∈ R|E|, λ ∈ R|I|

be the Lagrange multipliers associated with the consensus constraint, equality constraints, and inequality constraints in (31),

respectively. For notational convenience, we denote Λ =
[
νT ,µT ,λT

]T
. Typically, the inequality constraints are converted

into equalities by introducing slack variables. Without using the slack variables, switching functions are applied to reformulate

the inequality constraints, expressed as

fζ(s, q) =
1

2ζ

(
max{0, s+ ζq}2 − s2

)
=


− s2

2ζ , s+ ζq ≤ 0

2sq+q2ζ
2 , s+ ζq ≥ 0

(32)

where the right side in (32) are component-wise operations when s and q are vectors. By utilizing (32) to handle the inequalities

in (31), the augmented Lagrangian for (31) can be written as

Lp(x,y,Λ) = xTQ0y + νT (x− y) +
ζ1
2
‖x− y‖2

+
∑
i∈E

(
µi
(
xTQiy − ci

)
+
ζ2
2

∥∥xTQiy − ci
∥∥2
)

+
∑
j∈I

fζ3
(
λj ,x

TPjy − dj
)
, (33)
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where p = [ζ1, ζ2, ζ3] is the collection of the penalty coefficients associated with the augmented terms. By employing the

classical ADMM framework [42], [43] to solve (31), the variables x, y and the Lagrange multipliers Λ at step (k+ 1) can be

updated as follows:

xk+1 = arg min
x
Lpk(x,yk,Λk) (34a)

yk+1 = arg min
y
Lpk(xk+1,y,Λk) (34b)

νk+1 = νk + ζk1
(
xk+1 − yk+1

)
(34c)

µk+1
i = µki + ζk2

(
(xk+1)TQiy

k+1 − ci
)
, ∀i ∈ E (34d)

λk+1
j = max{0, λkj + ζk3

(
(xk+1)TPjy

k+1 − dj
)
},∀j ∈ I (34e)

where each penalty coefficient in pk are chosen as a non-decreasing positive sequence. Specifically, they are determined

according to the following updating rules,

ζk+1
1 =

βζ
k
1 , if ‖xk+1 − yk+1‖ ≥ τ‖xk − yk‖

ζk1 , otherwise
(35a)

ζk+1
2 =


βζk2 , if ‖(xk+1)TQiy

k+1 − ci‖

≥ τ‖(xk)TQiy
k − ci‖

ζk2 , otherwise

(35b)

ζk+1
3 =


βζk3 , if ‖[(xk+1)TPjy

k+1 − dj ]+‖

≥ τ‖[(xk)TPjy
k − dj ]+‖

ζk3 , otherwise

(35c)

where

[
(xk+1)TPjy

k+1 − dj
]+

:= max
{

(xk+1)TPjy
k+1 − dj ,−λk+1

j /ζk3
}
,

β ≥ 1 and τ are positive constants. The updates of Lagrange multipliers in (34) are straightforward. However, the updates of

x and y require to solve two sequences of convex quadratic optimization problems. Specifically, for the x-update, (33) is a

ζk1−strongly convex function when y = yk and Λ = Λk are given. Thus, the global optimum of the sequential subproblem

(34a) can be derived from the first order optimality conditions of (33), written as

∂Lpk(x,yk,Λk)

∂x
= Q0y

k + νk + ζk1
(
x− yk

)
∑
i∈E

(
µkiQiy

k + ζk2
(
xTQiy

k − ci
)
Qiy

k
)

+
∑
j∈I

Γx
k
j

(
λkjPjy

k + ζk3
(
xTPjy

k − dj
)
Pjy

k
)

= 0, (36)
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where Γx
k
j , j ∈ I, is a logical function associated with the inequality constraint j at kth step, which is defined as

Γx
k
j =


0, λkj + ζk3

(
(xk)TPjy

k − dj
)
≤ 0,

1, λkj + ζk3
(
(xk)TPjy

k − dj
)
> 0.

(37)

By solving (36), we can find the closed-form solution of the x-update, expressed as

xk+1 =
(
Ak
x

)−1
bkx, (38)

where Ak
x and bkx are defined as

Ak
x = ζk1 I +

∑
i∈E

ζk2
(
Qiy

k
) (

Qiy
k
)T

+
∑
j∈I

Γx
k
j ζ
k
3

(
Pjy

k
) (

Pjy
k
)T
, (39a)

bkx = −Q0y
k − νk + ζk1 yk −

∑
i∈E

((
µki − ζk2 ci

)
Qiy

k
)

−
∑
j∈I

(
Γx

k
j

(
λkj − ζk3 di

)
Pjy

k
)
, (39b)

where Ak
x is a positive definite matrix when the elements in pk are all positive. Similarly, with the given xk+1 and Λk, the

closed-form solution of the sequential subproblem (34b) for y-update can be obtained from

yk+1 =
(
Ak
y

)−1
bky , (40)

where

Ak
y = ζk1 I +

∑
i∈E

ζk2
(
Qix

k+1
) (

Qix
k+1
)T

+
∑
j∈I

Γy
k
j ζ
k
3

(
Pjx

k+1
) (

Pjx
k+1
)T
, (41a)

bky = −Q0x
k+1 + νk + ζk1 xk+1

−
∑
i∈E

((
µki − ζk2 ci

)
Qix

k+1
)

−
∑
j∈I

(
Γy

k
j

(
λkj − ζk3 dj

)
Pjx

k+1
)
, (41b)

Γy
k
j =


0, λkj + ζk3

(
(xk+1)TPjy

k − dj
)
≤ 0;

1, λkj + ζk3
(
(xk+1)TPjy

k − dj
)
> 0.

(41c)

With the analytical solutions in (38) and (40) derived for subproblems (34a) and (34b), the customized ADMM for nonconvex

QCQPs in (30) is summarized in Algorithm 1.
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Algorithm 1 Customized ADMM for nonconvex QCQP in (30)

Input: Q0, Qi, ci, i ∈ E , Pj , dj , j ∈ I, and constant parameters β, τ , ε
Output: Unknown vectors x and y
Initialization: x0,y0,Λ0 and penalty coefficients p0

1: for k = 0, 1, 2, ... do
2: Calculate the logical function Γx

k
j with xk, yk, Λk;

3: xk+1-update using (38) with yk, Λk;
4: Calculate the logical function Γy

k
j with xk+1, yk, Λk;

5: yk+1-update using (40) with xk+1,Λk;
6: Update Lagrange multipliers Λ using (34c), (34d), and (34e) with xk+1 and yk+1;
7: Penalty coefficients updates using (35);

8: Calculate the error vector ξ =

[
‖xk+1−yk+1‖
‖xk+1‖ ,

∑
i∈E
‖(xk+1)TQiy

k+1−c‖
‖c‖ ,

∑
j∈I

(‖Γx
k
j‖+‖Γy

k
j‖)

2

]
9: if ‖ξ‖1 ≤ ε then

10: break;
11: end if
12: k = k + 1
13: end for

B. Convergence Analysis of ADMM

Assumption II.1. In problem (30), the objective function and constraints are of class C2. Problem (30) has at least one feasible

solution and the objective function is lower bounded.

Assumption II.2. The coefficient matrices Q1,Q2, · · · ,Q|E| of all equality constraints in a QCQP satisfy that for any vector

x ∈ Rn without zero entries, the row vectors of [(x)TQ1; (x)TQ2; . . . ; (x)TQk] ∈ Rk×n are linearly independent, where |E|

denotes the cardinality of E . Moreover, the coefficient matrices of all inequality constraints P1,P2, . . . ,P|I| also satisfy that

the row vectors of [(x)TP1; (x)TP2; . . . ; (x)TPk] ∈ Rk×n are linearly independent, where |I| is the cardinality of I.

Denote

QEx =

[
(x)TQ1, (x)TQ2, · · · , (x)TQ|E|

]
∈ R|E|×n,

where QEx has a full column rank. As a result, σmin(QEx) > 0, where σmin(•) denotes the minimum singular value of ‘•’.

Then, for any vector µ ∈ R|E|, we have

∥∥∥(QEx)
T
µ
∥∥∥ ≥ σmin(QEx)‖µ‖. (42)

Similarly, for the inequality constraints, we have PIx =

[
(x)TP1, (x)TP2, · · · , (x)TP|I|

]
∈ R|I|×n has a full column rank

and σmin(PIx) > 0.

In the end-to-end EDL guidance problem formulated in (29), it is obvious that the objective and constraints in (29) are all

of class C2, and the objective function is lower bounded, which indicates that Assumption II.1 is valid for (29). Moreover,

each equality constraint associated with the discretized dynamics only include the state and control variables at current discrete

node and/or its adjacent nodes. As a result, the vectors Qix are linearly independent. A similar observation could be found

for the inequality constraints. Therefore, assumption II.2 is valid for the formulated Mars EDL problem in (29).
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Note that, when Assumption II.2 holds and xk is given, the equality constraints of (31), i.e., (xk)TQiy − ci = 0, will be

linearly independent with respect to y. In addition, in the formulated QCQP in (29), each equality constraint involves different

state and control variables at each discrete node, which leads to the linear independence of the vectors Q1x,Q2x, · · · ,Q|E|x.

Definition II.3. Strong convexity: A function f is called κ-strongly convex if there exists a positive constant κ such that the

following condition holds for all points x, y in its domain:

f(y) ≥ f(x) +5f(x)T (y − x) +
κ

2
‖y − x‖2. (43)

Moreover, if the function f ∈ C2, then it is κ-strongly convex if and only if 52f(x) � κI for all x in the domain, where I is

the identity matrix and 52f is the Hessian matrix, and the symbol ‘�’ means that 52f(x)− κI is positive semi-definite.

Lemma II.4. At every iteration, the xk-update in sub-problem (34a) and yk-update in sub-problem (34b), k = 1, 2, . . ., are

feasible and strongly convex.

Proof. At every iteration, for the x-update and y-update, the Hessian matrices of the Lagrangian are expressed as

52
xL =ζ1I +

∑
i∈E

ζ2 (Qiy) (Qiy)
T

+ ζ3
∑
j∈I

Γxj (Pjy) (Pjy)
T
, (44a)

52
yL =ζ1I +

∑
i∈E

ζ2 (Qix) (Qix)
T

+ ζ3
∑
j∈I

Γyj (Pjx) (Pjx)
T
, (44b)

where k is omitted for notational clarity. With [ζ1, ζ2, ζ3] being positive scalars, there exist κx > 0 and κy > 0 such that

52
xL � κxI � ζ1I and 52

yL � κyI � ζ1I hold for all x,y ∈ Rn. Meanwhile, the positive definiteness of Ak
x and Ak

y makes

these subproblems feasible for all k.

Denoting

G(x,y,µ,λ) = xTQ0y

+
∑
i∈E

(
µi
(
xTQiy − ci

)
+
ζ2
2
‖xTQiy − ci‖2

)
+
∑
j∈I

fζ3
(
λj ,x

TPjy − dj
)
,

then we have

L = G + νT (x− y) +
ζ1
2
‖x− y‖2 (45a)

5xL = 5xG + ν + ζ1 (x− y) (45b)

52
xL = 52

xG + ζ1I (45c)
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Similarly, by denoting

F(x,y,ν,λ) = xTQ0y + νT (x− y)

+
∑
j∈I

fζ3
(
λj ,x

TPjy − dj
)
,

we have

L = F + µT
(
xTQEy − c

)
+
ζ2
2

∥∥xTQEy − c
∥∥2
, (46a)

5yL = 5yF + µTQEx + ζ2
(
xTQEy − c

)
QEx, (46b)

52
yL = 52

yF + ζ2 (QEx)
T

(QEx). (46c)

where

xTQEy − c =



xTQ1y − c1

xTQ2y − c2
...

xTQ|E|y − c|E|


∈ R|E|×1, (47)

By denoting

H(x,y,ν,µ) = xTQ0y + νT (x− y) + µT
(
xTQEy − c

)
+
ζ2
2

∥∥xTQEy − c
∥∥2
,

we have

L = H+
∑
j∈I

fζ3
(
λj ,x

TPjy − dj
)
, (48a)

5yL = 5yH+ (Γy ◦ λ)
T

PIx

+ ζ3Γy ◦
(
xTPIy − d

)
PIx, (48b)

52
yL = 52

yH+ Γy ◦ ζ3 (PIx) (PIx)
T
. (48c)

where ◦ denotes the element-wise product.

Lemma II.5. When Assumption II.1 holds, G(x,y,µ,λ), F(x,y,ν,λ) and H(x,y,ν,µ) have Lipschitz continuous gradients

with respect to y for ζ1 > 0, ζ2 > 0 and ζ3 > 0, respectively.

Proof. From Assumption II.1, G ∈ C2 is in the set
{

(x,y) |xTPjy − dj 6= 0, j ∈ I
}

for all Λ. Thus, 5yG(x,y,µ,λ) is

almost everywhere differentiable. Consider the Hessian matrix of G with respect to y,

52
yG = ζ2

∑
i∈E

(Qix) (Qix)
T

+ ζ3
∑
j∈I

Γyj (Pjx) (Pjx)
T
. (49)
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Obviously, 52
yG is positive definite given x such that

∑
i∈E

(Qix) (Qix)
T 6= 0 or

∑
j∈I

Γyj (Pjx) (Pjx)
T 6= 0. Furthermore,

when x is given, there exists a positive constant L1 such that

‖ 5y G(y1)−5yG(y2)‖ ≤ L1‖y1 − y2‖, ∀y1,y2 ∈ Rn. (50)

which indicates that the gradient of G(x,y,µ,λ) with respect to y is Lipschitz continuous, and the Lipschitz constant is simply

the Frobenius norm of (49) for a fixed x. For F(x,y,ν,λ), the Hessian matrix with respect to y can be written as

52
yF = ζ1I + ζ3

∑
j∈I

Γyj (Pjx) (Pjx)
T
. (51)

Then, with ζ1 > 0 and ζ3 > 0, 52
yF is positive definite. Given x, there exists a constant L2 > 0 such that

‖ 5y F(y1)−5yF(y2)‖ ≤ L2‖y1 − y2‖, ∀y1,y2 ∈ Rn. (52)

Similarly, considering H(x,y,ν,µ), the Hessian matrix with respect to y is written as

52
yH = ζ1I + ζ2

∑
i∈E

(Qix) (Qix)
T
. (53)

Then, with ζ1 > 0 and ζ2 > 0, 52
yH is also positive definite. When x is given, there exists a constant L3 > 0 such that

‖ 5y H(y1)−5yH(y2)‖ ≤ L3‖y1 − y2‖, ∀y1,y2 ∈ Rn. (54)

Therefore, G(x,y,µ,λ), F(x,y,ν,λ), and H(x,y,ν,µ) have Lipschitz continuous gradients with respect to y.

Theorem II.6. Let Assumptions II.1 and II.2 hold, and {pk} be a sequence with non-decreasing positive elements such that

κky
2
− (β + 1)Lk1

2ζk1
− (β + 1)Lk2

2ζk2
− |I| (β + 1)Lk3

2ζk3
> 0,

∀ k = 1, 2, ..,K, (55)

where κky is the constant of κky-strongly convex Lagrangian L at kth step, Li, i = 1, 2, 3 are the Lipschitz constants of G,F ,H

at kth step, respectively. Let Λ0 = [ν0,µ0,λ0] 6= 0, then the sequence {xk,yk,Λk} generated from Algorithm 1 will converge

to a limit point and lim
k→∞

(
xk − yk

)
= 0.

Proof. For the x-update at kth step in (34a) with a given pair (yk,Λk), there exists the following inequalities,

Lpk(xk,yk,Λk)− Lpk(xk+1,yk,Λk)

≥5xL(xk+1,yk,Λk)T
(
xk − xk+1

)
+
κkx
2

∥∥xk − xk+1
∥∥2

=
κkx
2

∥∥xk − xk+1
∥∥2 ≥ ζk1

2

∥∥xk − xk+1
∥∥2
, (56)

where the inequality holds due to the strong convexity of Lpk(x,yk,Λk) with respect to x, the equality holds due to the first

order optimality condition of (34a) with respect to xk+1. Similarly, for the y-update at kth step in (34b) with a given pair
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(xk+1,Λk), we have the following inequality:

Lpk(xk+1,yk,Λk)− Lpk(xk+1,yk+1,Λk) ≥
κky
2

∥∥yk − yk+1
∥∥2
. (57)

On the other hand, consider the following first order optimality condition for the y-update at the kth step

5yLpk = 5yG(yk+1)− νk + ζk1
(
yk+1 − xk+1

)
= 0. (58)

Combining (58) with the dual variable ν update step in (34c), we obtain

5yG(yk+1) = νk+1. (59)

Thus,

∥∥νk+1 − νk
∥∥ =

∥∥5yG(yk+1)−5yG(yk)
∥∥

≤ Lk1
∥∥yk+1 − yk

∥∥ , (60)

where the inequality holds due to the Lipschitz continuity of 5yG with respect to y. For any given k, µk and yk+1 are always

updated in the same iteration. Then, we can rewrite the first order optimality condition of Lp at kth step as

5yLpk = 5yF(yk+1) +
(
µk
)T

QEx
k+1

+ ζk2

((
xk+1

)T
QEy

k+1 − c
)

QEx
k+1

= 0. (61)

Substituting the dual variable µ-update in (34d) into (61), we have

∇yF(yk+1) = −
(
µk+1

)T
QEx

k+1. (62)

Thus,

∥∥∇yF(yk+1)−∇yF(yk)
∥∥

=
∥∥∥(µk+1

)T
QEx

k+1 −
(
µk
)T

QEx
k
∥∥∥ . (63)

For given xk+1 and xk, there exists a nonzero vector x̄k+1 which is the linear combination of xk+1 and xk such that

∥∥∥(µk+1
)T

QEx
k+1 −

(
µk
)T

QEx
k
∥∥∥

≥
∥∥∥(QE x̄k+1

)T (
µk+1 − µk

)∥∥∥ . (64)
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Note that either x̄k+1 = xk+1 or x̄k+1 = xk will make (64) valid. Then, when Assumption II.2 holds, we have,

∥∥∥(QE x̄k+1
)T (

µk+1 − µk
)∥∥∥ ≥ σmin(QE x̄

k+1)
∥∥µk+1 − µk

∥∥ (65)

Then, combining (63)-(65) and the Lipschitz continuity of the gradient 5yF with respect to y in (52), there exist a constant

Lk2 > 0 such that

∥∥µk+1 − µk
∥∥ ≤ Lk2 ∥∥yk+1 − yk

∥∥ , (66)

Similarly, we consider the update of λ at kth step. The first order optimality condition for the y-update at the kth step can be

written as

5yLpk = 5yH(yk+1) +
(
Γk+1
y ◦ λk

)T
PIx

k+1

+ ζk3 Γk+1
y ◦

((
xk+1

)T
PIy

k+1 − d
)

PIx
k+1

= 0. (67)

Substituting the dual variable update in (34e) into (67), we have

H(yk+1) = −
(
Γk+1
y ◦ λk

)T
PIx

k+1. (68)

Similarly, there exists a x̃k+1 ∈ Rn such that

∥∥H(yk+1)−H(yk)
∥∥

=
∥∥∥(Γk+1

y ◦ λk+1
)T

PIx
k+1 −

(
Γky ◦ λk

)T
PIx

k
∥∥∥

≥
∥∥∥(Γk+1

y ◦ λk+1 − Γky ◦ λk
)T

PI x̃
∥∥∥. (69)

Combining Assumption II.2 and Lipschitz continuous gradient in (54), we can obtain the bounded constraint on dual variable

λ, expressed as

∥∥Γk+1
x ◦ λk+1 − Γk+1

y ◦ λk
∥∥ ≤ Lk3 ∥∥yk+1 − yk

∥∥. (70)

Next, we rewrite the successive difference of the augmented Lagrangian in the form

Lpk+1(xk+1,yk+1,Λk+1)− Lpk(xk,yk,Λk)

= Lpk+1(xk+1,yk+1,Λk+1)− Lpk(xk+1,yk+1,Λk)

+ Lpk(xk+1,yk+1,Λk)− Lpk(xk+1,yk,Λk)

+ Lpk(xk+1,yk,Λk)− Lpk(xk,yk,Λk). (71)
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In the above equation, the subtraction

Lpk+1(xk+1,yk+1,Λk+1)− Lpk(xk+1,yk+1,Λk)

is bounded by

Lpk+1(xk+1,yk+1,Λk+1)− Lpk(xk+1,yk+1,Λk)

=
(
νk+1 − νk

)T (
xk+1 − yk+1

)
+
ζk+1
1 − ζk1

2

∥∥xk+1 − yk+1
∥∥2

+
(
µk+1 − µk

)T ((
xk+1

)T
QEy

k+1 − c
)

+
ζk+1
2 − ζk2

2

∥∥∥(xk+1
)T

QEy
k+1 − c

∥∥∥2

+
(
Γk+1
x ◦ λk+1 − Γky ◦ λk

)T ((
xk+1

)T
PIy

k+1 − d
)

+
ζk+1
3 ‖Γk+1

x ‖ − ζk3 ‖Γky‖
2

∥∥∥(xk+1
)T

PIy
k+1 − d

∥∥∥2

=
ζk+1
1 + ζk1
2(ζk1 )2

∥∥νk+1 − νk
∥∥2

+
ζk+1
2 + ζk2
2(ζk2 )2

∥∥µk+1 − µk
∥∥2

+
ζk+1
3 ‖Γk+1

x ‖ − ζk3 ‖Γky‖
2(ζk3 )2

∥∥Γk+1
x ◦ λk+1 − Γky ◦ λk

∥∥2

≤β + 1

2ζk1

∥∥νk+1 − νk
∥∥2

+
β + 1

2ζk2

∥∥µk+1 − µk
∥∥2

+
(β‖Γk+1

x

∥∥+‖Γky
∥∥)

2ζk3

∥∥Γk+1
x ◦ λk+1 − Γky ◦ λk

∥∥2
(72)

where the equality follows the definition of L and the update laws of Λ; the inequality holds due to the updating rules of penalty

parameters in (35). Recall that Lpk(xk+1,yk+1,Λk)−Lpk(xk+1,yk,Λk) and Lpk(xk+1,yk,Λk)−Lpk(xk,yk,Λk) in (71)

are bounded in (56) and (57) due to the strong convexity of L with respect to x and y. Then, combining these inequalities,

we have

Lpk+1(xk+1,yk+1,Λk+1)− Lpk(xk,yk,Λk)

=Lpk+1(xk+1,yk+1,Λk+1)− Lpk(xk+1,yk+1,Λk)

+ Lpk(xk+1,yk+1,Λk)− Lpk(xk+1,yk,Λk)

+ Lpk(xk+1,yk,Λk)− Lpk(xk,yk,Λk)

≤− κkx
2

∥∥xk+1 − xk
∥∥2 −

κky
2

∥∥yk+1 − yk
∥∥2

+
β + 1

2ζk1

∥∥νk+1 − νk
∥∥2

+
β + 1

2ζk2

∥∥µk+1 − µk
∥∥2

+
(β‖Γk+1

x ‖+ ‖Γky‖)
2ζk3

∥∥Γk+1
x ◦ λk+1 − Γkyλ

k
∥∥2

≤− κkx
2

∥∥xk+1 − xk
∥∥2

−

(
κky
2
− (β + 1)Lk1

2ζk1
− (β + 1)Lk2

2ζk2

)∥∥yk+1 − yk
∥∥2
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−

(
(β‖Γk+1

x ‖+ ‖Γky‖)Lk3
2ζk3

)∥∥yk+1 − yk
∥∥2
, (73)

where the last inequality is due to (60), (66) and (70). In addition, based on the definitions of Γx and Γy in (37) and (41), we

have ‖Γx‖ ≤ |I| and ‖Γy‖ ≤ |I|. Therefore,

Lpk+1(xk+1,yk+1,Λk+1)− Lpk(xk,yk,Λk)

≤− κkx
2

∥∥xk+1 − xk
∥∥2

−

(
κky
2
− (β + 1)Lk1

2ζk1
− (β + 1)Lk2

2ζk2

)∥∥yk+1 − yk
∥∥2

−
(
|I|(β + 1)Lk3

2ζk3

)∥∥yk+1 − yk
∥∥2
. (74)

The above result implies that when satisfying the condition in (55), the value of the augmented Lagrangian function is non-

increasing. Note that as long as κky 6= 0, one can always find a pk with sufficiently large elements [ζk1 , ζ
k
2 , ζ

k
3 ] to satisfy the

above condition. Furthermore, by summing both sides in (74) from k = 0 to ∞, we obtain

Lp∞(x∞,y∞,Λ∞)− Lp0(x0,y0,Λ0)

≤ −
∞∑
k=0

κkx
2

∥∥xk+1 − xk
∥∥2 −

∞∑
k=0

κ̂ky
2

∥∥yk+1 − yk
∥∥2
. (75)

where κ̂y = κky −
(β+1)Lk

1

ζk1
− (β+1)Lk

2

ζk2
− |I|(β+1)Lk

3

ζk3
. With Assumption II.1 holding, the Augmented Lagrange function is lower

bounded. Then, in (75), both
∞∑
k=0

κk
x

2 ‖x
k+1 − xk‖2 and

∞∑
k=0

κ̂k
y

2 ‖y
k+1 − yk‖2 are upper bounded. In other words, the sequences

{xk} and {yk} will converge to limit points. Moreover, due to the constraint ‖νk+1 − νk‖ ≤ Lk1‖yk+1 − yk‖ in (60), the

sequence {νk} will also converge to a limit point, denoted as ν∞. Meanwhile, by taking the limits on both sides of (34c), we

have

lim
k→∞

νk+1 = lim
k→∞

(
νk + ζk1

(
xk+1 − yk+1

))
, (76)

which leads to lim
k→∞

(xk+1 − yk+1) = 0.

Theorem II.7. Let {xk} and {yk} be the sequences obtained from Algorithm 1, if lim
k→∞

(
xk+1 − xk

)
= 0 and lim

k→∞

(
xk − yk

)
=

0, then the limit point of {xk} is a stationary point of problem (30).

Proof. A Karush–Kuhn–Tucker (KKT) point x∗ of problem (30) with the corresponding dual variables µ∗ and λ∗ satisfies that

Q0x
∗ +

∑
i∈E

µ∗iQix
∗ +

∑
j∈I

λ∗jPjx
∗ = 0 (77a)

µ∗i

(
(x∗)

T
Qix

∗ + ci

)
= 0, ∀i ∈ E (77b)

λ∗j

(
(x∗)

T
Pjx

∗ + dj

)
= 0, ∀j ∈ I (77c)(

(x∗)
T

Qix
∗ + ci

)
= 0 (77d)
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(
(x∗)

T
Pjx

∗ + dj

)
≤ 0 (77e)

λj ≥ 0 (77f)

With lim
k→∞

(xk+1 − xk) = 0 and lim
k→∞

(xk − yk) = 0, {xk} and {yk} will converge to a limit point, denoted as x∞ = y∞.

Moreover, considering the bounded dual variables in (60) and (70), {Λk} will converge to a limit point denoted as Λ∞. Then

Λ∞ also satisfies the first order optimality conditions of subproblems (34a) and (34b), expressed as

Q0y
∞ + ν∞I +

∑
i∈E

(µ∞i Qiy
∞)

+
∑
j∈I

Γ∞xj
(
λ∞j Pjy

∞) = 0 (78a)

Q0x
∞ − ν∞I +

∑
i∈E

(µ∞i Qix
∞)

+
∑
j∈I

Γ∞yj
(
λ∞j Pjx

∞) = 0 (78b)

µ∞i

(
(x∞)

T
Qiy

∞ + ci

)
= 0,∀i ∈ E (78c)

λ∞j

(
(x∞)

T
Pjy

∞ + dj

)
= 0,∀j ∈ I (78d)(

(x∞)
T

Qiy
∞ + ci

)
= 0 (78e)(

(x∞)
T

Pjy
∞ + dj

)
≤ 0 (78f)

λ∞j ≥ 0 (78g)

When the limit points satisfy x∞ = y∞, Γ∞xj = Γ∞yj , the summation of (78a) and (78b) and (78c)-(78g) lead to the same KKT

conditions in (77). Thus, the limit point of {xk} is a stationary point of problem (30).

III. SIMULATION RESULTS

In this section, we present simulation results obtained using the proposed ADMM algorithm and comparative results obtained

from a commercial NLP solver [44]. All simulations were run in MatLab on a 3.6 GHz Desktop with 32 GB RAM. In §III-A

and III-B, the proposed ADMM is first applied to solve the guidance problems for Mars entry phase and powered descent

phase separately. Next, the proposed algorithm is applied to solve the fuel-optimal end-to-end EDL guidance problem in §III-C.

Comparative results obtained from the NLP solver for the same problems are presented to demonstrate the effectiveness of the

proposed ADMM algorithm. Monte-Carlo simulations are provided in §III.D to demonstrate the robustness of the proposed

algorithm. For all simulation cases, the convergence criterion is set as ε = 1e−4, and the sequences of three weighting factors

{ζk1 }, {ζk2 }, {ζk3 } are generated via (35) with ζ0
1 = 1e2, β1 = 1.4, ζ0

2 = 5e3, β2 = 1.5, ζ0
3 = 3, β3 = 1.2, τ = 1, ζ1max =

5e5, ζ2max
= 5e6, ζ3max

= 5e2.

A. Results for Optimal Guidance of Entry Phase

We are using the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) in [10] as the landing vehicle, shown in Fig. 4.

Specifically, the shape of the landing vehicle can be represented by a symmetric sphere cone with 20 m diameter. The entry
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mass m0 is assumed to be 51.099 tons. The lift and drag coefficients of the vehicle CL and CD are obtained from [45], where

cd0 = 1.572, cd1 = −0.0092, and cd2 = −2.242. The upper and lower bounds on CL are set as 0 ≤ CL ≤ 0.38. The initial

states of the entry vehicle are given by R0 = Rm + 100 km and V0 = 4700 m/s. The initial flight path angle is given as

γ0 = −10.8◦. The bounds on the terminal radius of the entry phase are RLI = Rm + 7 km and RUI = Rm + 12 km. The other

parameters for the entry phase guidance problem are set as

kQ = 1.9027× 10−8 × (
√
h0g0)3.15, Qmax = 800 W/cm2,

q̄max = 14000 N/m2, nmax = 2.5gE , gE = 9.8 m/s2,

g0 = 3.7114 m/s2, S =
202 · π

4
m2.

Fig. 4: Hypersonic Inflatable Aerodynamic Decelerator in [10]

By discretizing the entry phase trajectory into 50 intervals, it takes 99 iterations and 16.1 seconds for the customized ADMM

to obtain a converged result. The initial guess used for the customized ADMM is generated by giving a linear control CL

varying from CLmin to CLmax, and then integrating the dynamics forward till the radius reaches the specified lower bound.

The simulation results are shown in Figs. 5-7. Specifically, Fig. 5 demonstrates time histories of CL and CD obtained from

the customized ADMM and an NLP solver. The duration results from both methods, 278.4 seconds for ADMM and 274.7

seconds for NLP, are close to each other. The time histories of the states variables from both methods are similar, as shown

in Fig. 6, where the red-circled curves represent the ADMM solution and the blue star curves represent the NLP solution. For

the time histories of states, the integrated curves and the solution of ADMM are almost overlapping with each other. The blue

solid line in Fig. 6b represents the heating rate boundary during the entry phase. Furthermore, Fig. 7 shows the time histories

of dynamic pressure and normal load, where the blue solid lines are the upper bounds of the dynamic pressure and normal

load constraints. The terminal velocity of the entry phase obtained from ADMM is 327.2 m/s at an altitude of 7001.4 m,

which is very close to the terminal speed obtained from the NLP solver, that is 328.8 m/s at an altitude of 7018.5 m.

B. Results for Optimal Guidance of the Powered Descent Phase

For the powered descent phase, we assume that the initial position and velocity are the final states of entry trajectories

obtained from §IV.III-A. For fair comparison, we use the final states of entry trajectories obtained from ADMM and NLP,
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Fig. 5: Time histories of CL and CD from ADMM and NLP solver

(a) Time histories of of flight path
angle

(b) Reference altitude vs. velocity

Fig. 6: Time histories of state variables during the entry phase from both methods

(a) Time history of dynamic pressure (b) Time history of normal load

Fig. 7: Time histories of mission constraints during the entry phase

respectively, as the corresponding initial conditions of the powered descent phase when using both methods again for guidance

in this phase. Specifically, the terminal states of the entry phase obtained from the ADMM are z(tI) = 7001.4 m, vx(tI) =

V cos(γ) = 273.3 m/s, vz(tI) = V sin(γ) = −180.0 m/s, and the corresponding ones obtained from NLP are z(tI) =

7018.5 m, vx(tI) = V cos(γ) = 281.1 m/s, vz(tI) = V sin(γ) = −170.4 m/s. In addition, we assume x(tI) = 0, and the

parameters in the equations of motion for the powered descent phase are set as

g = [0,−3.7114]T m/s2, mpdi = 51099 kg,
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mdry = 0.8mpdi = 40880 kg, η = 4.53× 10−5s/m,

Tmax = 800kN ∗ 0.8 = 640 kN,

Tmin = 0.3 ∗ 800 kN = 240 kN. (79)

The maximum glide-slope angle is set as θ = 86◦. The trajectory for the powered-descent phase is discretized into 92 intervals.

Figures 8 and 9 present the results generated for the powered descent phase using the proposed ADMM and an NLP solver,

respectively. Note that the powered descent trajectory of the NLP solver is discretized by 60 nodes, which is the maximum

number of nodes for the NLP to achieve a converged solution. The simulation took 3.1 seconds and 51 iterations for ADMM to

obtain a converged result that consumes 1561.8 kg of fuel and 72.3 seconds to land on the designated landing site. In contrast,

the calculation time of the NLP solver is 8.1 seconds and the solution from NLP consumes 1498.5 kg fuel and 73.1 seconds

for landing.

Comparing the thrust profiles in Fig. 8a, the solutions from ADMM and NLP are close to a bang-bang control profile with

max-min-max arcs. Obviously, the entry phase and the powered descent phase are coupled in the transition conditions including

the altitude and the velocity components at the transition point. Therefore, the optimal guidance laws of both phases, as well

as the transition point, need to be determined together when searching for the fuel-optimal end-to-end EDL trajectory.

(a) Time history of control magnitude ‖T‖ (b) Time history of control components Tx and Tz

Fig. 8: Time histories of control magnitude and components for the powered descent phase from ADMM and NLP

C. Results for Optimal Guidance of the End-to-End EDL Mission

In the end-to-end EDL problem, all settings in the simulation, including the spacecraft parameters, the initial states of the

entry phase, the terminal conditions of the powered descent phase, and the constraints in both phases are the same as those

in §IV.III-A and §IV.III-B. But the ignition position and time are unknown and to be determined. Moreover, we consider an

inequality constraint on the x coordinate of the transition point, i.e. x(tI) ∈ [−10, 10] km. Then both ADMM and NLP are

applied to solve the end-to-end EDL guidance problem with the same initial and terminal conditions. Since the NLP solver

requires a good combination of the number of discrete nodes and initial guess to find a converged solution, both the entry phase

trajectory and the powered descent phase trajectory are discretized into 60 nodes. In order to improve the accuracy of ADMM
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(a) Optimized trajectory (b) Time history of mass

(c) Time history of velocity components vz

Fig. 9: Trajectory and time histories of state variables for the powered descent phase from the ADMM and the NLP solver

solution, the trajectory in the powered descent phase for ADMM is discretized into 93 nodes. As a result, the homogeneous

QCQP problem of (29) includes 1869 unknown variables. Moreover, the initial guess for NLP is obtained from the solution of

separated phase path planning in §IV.III-A and §IV.III-B. It takes the customized ADMM 73.2 seconds and 210 iterations to

find a converged solution. However, the NLP solver fails to find a converged solution under this scenario when setting a free

x(tI) for the powered descent phase, which in turn shows the effectiveness of the proposed ADMM in solving the large-scale

end-to-end EDL guidance problem.

In order to obtain comparative results from the NLP solver, we let x(tI) = 0 for the powered descent phase in the end-to-end

EDL mission. Under this setting, the problem is solved by ADMM and NLP, separately. The comparison of mission duration,

fuel consumption, and computation time from the separate phase guidance and the end-to-end EDL guidance using ADMM

and NLP are summarized in Table I. The time histories of the control and state variables of the end-to-end EDL mission are

shown in Figs. 10 and 11, respectively. Figures 10a shows the optimized control profiles, CL and CD, from ADMM with a

free x(tI), ADMM with a fixed x(tI), and NLP in entry phase, respectively. When x(tI) is free, the optimized x∗(tI) is -5.52

km, and the velocity at the transition point from the ADMM solution is 298.3 m/s at the altitude of 7000.5 m. However, with

a fixed x(tI) = 0, the speed at the end of entry phase in the ADMM solution is 315.5 m/s at an altitude of 6912.8 m, while

the speed from NLP is 329.4 m/s at 6995 m.
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Figures 10b and 10c present the thrust components and magnitude in powered-descent phase from two methods. The

trajectories and time histories of state variables obtained from ADMM and NLP are shown in Fig.11. When x(tI) is free,

the terminal mass of the landing vehicle from the ADMM solution is about 50087.0 kg, which indicates that the landing

vehicle only consumes 1012.0 kg of fuel during the powered descent phase. However, if x(tI) is fixed at 0, the landing vehicle

consumes 1494.8 kg of fuel during the powered descent phase in the ADMM solution. In contrast, the NLP solution of the

end-to-end mission consumes 1496.2 kg of fuel, which is 484.2 kg less than the fuel consumption in the ADMM solution with

the fixed x(tI) and 1.4 kg more than that from the ADMM with a free x(tI). In addition, the time histories of the dynamic

pressure and the normal load during the entry phase are presented in Fig. 13, which shows that for the ADMM solution, the

normal load inequality constraint is active at about 100 seconds during the entry phase.

From Tables 1, several conclusions can be drawn: (1) Solutions from both ADMM and NLP show the advantages of end-to-

end EDL planning strategy in terms of fuel-saving by comparing to the corresponding solutions obtained from separate phase

planning, especially for the case with unfixed x coordinate at the transition point; (2) The comparison of the computational time

of both methods shows the computational efficiency of the proposed ADMM algorithm in solving the end-to-end EDL guidance

problem. The observation of improved fuel efficiency of the end-to-end EDL guidance is consistent with our expectation that

optimizing the transition point between the two phases will further improve the fuel efficiency.

TABLE I: Comparison of mission duration, fuel consumption, and computation time for separate phase guidance and end-to-
end EDL guidance using ADMM and NLP: Case 1: End-to-end guidance from ADMM with a fixed x(tI); Case 2: End-to-end
guidance from ADMM with a free x(tI); Case 3: End-to-end guidance from NLP with a fixed x(tI); Case 4: Separate phase
guidance from ADMM; Case 5: Separate phase guidance from NLP.

tI (sec) tf (sec) Fuel (kg)
Computational

time (sec)
Case 1 293.0 362.5 1494.8 50.7
Case 2 301.6 348.7 1012.0 51.2
Case 3 274.1 346.4 1496.2 78.1
Case 4 278.4 350.7 1561.8 16.1+3.1
Case 5 274.7 347.8 1498.5 1.5+8.1

D. Robust Analysis of the End-to-End EDL Mission Guidance

In this section, we aim to verify the robustness and computational efficiency of the proposed algorithm in generating optimal

end-to-end trajectories given initial conditions within a specified range. Specifically, we consider changes of the initial conditions

around the nominal initial altitude R0 = Rm + 100 km and velocity V0 = 4700 m/s, where the nominal values are selected

from the problem settings in §IV.III-C. Accordingly, the initial altitude and velocity are set as

R(t0) = R0 + δr, V (t0) = V0 + δV, (80)

where δr is assumed to have a zero-mean normal distribution with an independent standard deviation of 5 km, and δV is

assumed to have a zero-mean normal distribution with an independent standard deviation of 50 m/s.

We generate 1000 cases with different initial altitudes and velocities using the above normal distributions, shown in Fig. 14a.

All of these 1000 cases converge to local optimum points. Moreover, Fig. 14b shows the fuel consumption of these 1000 cases,
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(a) Time histories of CL in the entry phase (b) Time histories of thrust components in the powered descent
phase

(c) Time histories of thrust magnitude in the powered descent
phase

Fig. 10: Time histories of control variables for the end-to-end EDL mission from ADMM and NLP

(a) Time history of flight path angle γ (b) Altitude vs. speed

Fig. 11: Trajectory and time histories of state variables for the end-to-end EDL mission from ADMM and NLP

where the mean fuel consumption value is 1091.8 kg and the standard deviation is 724.0 kg. Figure 14c shows the computational

time of all 1000 cases, where 65% cases only takes less than 60 seconds to find a converged solution, and the computational

time of the other cases vary from 70 seconds to 140 seconds. The average computational time of these 1000 cases is 64.4

seconds. These simulation results support the conclusion that the algorithm’s results do not change appreciably for any initial
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(a) Time history of mass in
powered-descent phase

(b) Optimized trajectories in Pow-
ered descent phase

Fig. 12: Trajectory and time histories of state variables for the end-to-end EDL mission from ADMM and NLP

(a) Normal load in entry phase (b) Dynamic pressure in entry
phase

Fig. 13: Time histories of normal load and dynamic pressure for the end-to-end EDL mission from ADMM and NLP

conditions in the tested range.

In a summary, by integrating the separate guidance problems of the entry phase and powered descent phase into an end-

to-end EDL guidance problem, we have more flexibility to plan the entire EDL mission, which leads to a solution with less

fuel consumption. Meanwhile, since the fuel required for EDL mission only takes less than 40% of the entire fuel capacity,

the vehicle could be designed with smaller fuel capacity, which will reduce the vehicle mass. Moreover, the simulation results

under different problem settings, i.e., free and fixed x(tI), validate the effectiveness and robustness of the customized ADMM

for solving the large-scale multi-phase EDL guidance problem compared to the NLP solver. Furthermore, each iteration of the

ADMM is a closed-form update based on simple linear vector/matrix operations. In other words, the ADMM does not require

any optimization solver, which makes it highly implementable for real-time computations.

(a) Initial position and velocity dispersion with respect
to the nominal values.

(b) Fuel consumption of all 1000
cases

(c) Computational time of all
1000 cases

Fig. 14: Fuel consumption and computational time of all 1000 cases.
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IV. CONCLUSIONS

This paper has investigated the fuel-optimal guidance of the end-to-end human-Mars entry, powered descent and landing

(EDL) mission by planning the entire decent sequence as a whole. We first modeled the end-to-end EDL problem as a

multi-phase optimal control problem with different dynamics and constraints at each phase. Via polynomial approximation

and discretization techniques, this multi-phase optimal control problem is reformulated as a polynomial programming problem

which is then equivalently converted into a nonconvex quadratically constrained quadratic programming problem. A customized

alternating direction method of multipliers is developed to solve large-scale nonconvex QCQPs based on simple linear matrix

operations. Convergence analysis of the proposed algorithm is provided under certain conditions on algorithmic parameters.

Finally, the comparative simulation results validate the improved fuel efficiency of the end-to-end EDL guidance compared with

the fuel consumption amount obtained from both end-to-end planning and separate phase guidance. Moreover, the computational

efficiency and robustness in terms of calculation time and convergence of the customized ADMM algorithm has been verified

through comparison with the state-of-art nonlinear programming (NLP) method and analysis of uncertainty on initial altitude

and velocity. When handling large-scale QCQP problems with more than one thousand unknown variables, the proposed

algorithm can find a local optimum within several seconds in Matlab computational environments. The proposed formulation

and algorithm can be applied to other challenging mission planning problems where the system is characterized with varying

dynamics and/or constraints. Our future work will focus on extending the human-mars EDL problem to three dimensions, and

further improving the computational efficiency.
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