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Abstract— We address the problem of model-free distributed
stabilization of heterogeneous multi-agent systems using rein-
forcement learning (RL). Two algorithms are developed. The
first algorithm solves a centralized linear quadratic regulator
(LQR) problem without knowing any initial stabilizing gain in
advance. The second algorithm builds upon the results of the
first algorithm, and extends it to distributed stabilization of
multi-agent systems with predefined interaction graphs. Rigor-
ous proofs are provided to show that the proposed algorithms
achieve guaranteed convergence if specific conditions hold. A
simulation example is presented to demonstrate the theoretical
results.

Index Terms— Reinforcement learning, linear quadratic reg-
ulator, optimal distributed control, multi-agent systems.

I. INTRODUCTION

Reinforcement learning (RL) is a goal-oriented learning
method where a system optimizes an intended policy ac-
cording to a reward returned from its environment. Because
of the generality of the approach, RL has found applications
in diverse areas such as robotics [1], communication [2],
electric power systems [3], and defense-related military
applications [4]. It has also been shown as a fantastic tool
for solving optimal control problems, especially for linear
quadratic regulator (LQR) design, when system dynamics
are unknown [5]. A variety of formulations of RL has
been proposed in the model-free LQR literature including
methods such as adaptive dynamic programming (ADP)
[6], Q-learning [7], [8], and zeroth-order optimization [9].
Extensions of these centralized designs to distributed RL-
based control have been reported in [10], [11], [12].

In this paper, we revisit the centralized LQR problem
and the distributed stabilization of multi-agent networks with
coupled dynamics using model-free RL. In the literature,
almost all the RL-based LQR control methods require an
initial stabilizing controller to start the learning algorithm
even when the plant dynamics is known. In practice, how-
ever, due to the uncertainty of dynamics, knowing such initial
stabilizing gains may not always be possible. Accordingly,
the novelty of our work is to design RL algorithms for
generating centralized and distributed stabilizing controllers
without knowing explicit system dynamics. The problem of
learning centralized stabilizing controllers has been recently
addressed in [8], [13] for discrete-time systems, but the prob-
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lem for continuous-time systems and distributed stabilization
are yet to be studied.

To resolve this issue, we propose two off-policy RL
algorithms based on the ADP technique for continuous-
time linear systems with unknown dynamics. The first data-
driven algorithm solves the centralized LQR problem without
having any stabilizing gain as its initial guess. The second
algorithm builds on the results of the first algorithm, and
extends it to solving distributed stabilization of multi-agent
systems with a predefined interaction graph. The fundamen-
tal idea is to introduce a damping parameter to the system,
which is inspired by [14]. Our design, however, is quite
different than [14] as we propose an explicit updating law
for the damping parameter, followed by a rigorous proof
of convergence. Moreover, unlike [14], in our work the
distributed stabilizing gain is learned based on a centralized
stabilizing gain. The main results are illustrated using a
simulation example.

This rest of the paper is structured as follows. In Section
II, we introduce the conventional LQR problem and the
damping formulation, followed by an off-policy RL algo-
rithm based on ADP for deriving the optimal LQR without
having a stabilizing gain in advance. In Section III, we extend
this design to a multi-agent stabilizing control problem. In
Section IV, a simulation example is presented to illustrate
the effectiveness of the two algorithms. In Section V, con-
clusions are drawn. The proof of Theorem 1 is presented in
the appendix.

Notation: Throughout the paper, given a matrix X , X � 0
implies that X is positive semi-definite; X � 0 implies
that X is positive definite; S+ is the set of positive def-
inite matrices. For a symmetric matrix X , λmax(X) and
λmin(X) denote the maximum and minimum eigenvalues
of X , respectively. Let vec(X) ∈ Rn2

denote the vector
stacking up columns of X ∈ Rn×n from left to right. Let
diag{X1, ..., XN} denote a block diagonal matrix with Xi’s
on the diagonal. N+ denotes the set of positive integers. The
Euclidean 2-norm is denoted by || · ||.

II. MODEL-FREE LQR WITHOUT AN INITIAL
STABILIZING CONTROLLER

Consider the continuous-time LQR problem:

min
K

J(x(0),K) =

∫ ∞
0

(xTQx+ uTRu)dt

s.t. ẋ(t) = Ax(t) +Bu(t),

u(t) = −Kx(t),

(1)

where x(t) ∈ Rn and u(t) ∈ Rm are the system state and
the control input at time t, respectively, A ∈ Rn×n and
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B ∈ Rn×m are unknown. The variable K is the control gain
matrix, which is also referred to as the “policy”. Q � 0 and
R � 0 are both considered to be known. Such a setting is
reasonable because Q and R determine the desired transient
behavior of the system, thus are usually artificially designed.

We make the following assumption to guarantee the exis-
tence and uniqueness of the solution to (1):

Assumption 1. (A,B) is stabilizable, (Q1/2, A) is observ-
able.

The problem we aim to solve is formally stated as follows:

Problem 1. Given Q, R, and a collection of data D =
{x(t), u(t), t ∈ [0, Zδt]} with δt > 0 and Z ∈ N+ for the
linear continuous-time system in (1), find the optimal control
gain K for the LQR problem (1).

A. The Damped LQR Problem and Kleinman’s Algorithm

To solve (1) without a stabilizing controller, similar to
[14], let us consider the damped problem:

min
K

J(x̂(0),K, α) =

∫ ∞
0

e−2αt(x̂TQx̂+ ûTRû)dt

s.t. ˙̂x(t) = Ax̂(t) +Bû(t),

û(t) = −Kx̂(t),

(2)

where α ≥ 0 is the damping parameter. By setting x(t) =
e−αtx̂(t) and u(t) = e−αtû(t), problem (2) is equivalent to
the following problem in the sense that with the same control
policy and x(0) = x̂(0), they have equivalent cost function
values:

min
K

J(x(0),K, α) =

∫ ∞
0

(xTQx+ uTRu)dt

s.t. ẋ(t) = (A− αI)x(t) +Bu(t),

u(t) = −Kx(t).

(3)

When A and B are known, given α such that (A−αIn, B)
is stabilizable, it is well-known that the solution to (3) is

K∗ = R−1BTP, (4)

where P is the solution to the following algebraic Riccati
equation:

(A− αI)TP + P (A− αI) +Q− PBR−1BTP = 0. (5)

Given a stabilizing gain K0, Kleinman’s algorithm [15]
shows that equation (5) can be obtained by alternatively
solving for Pk and Kk such that

(A−αI−BKk)TPk+Pk(A−αI−BKk)+Q+KT
k RKk = 0,

(6)
Kk+1 = R−1BTPk, k = 0, 1, 2, .... (7)

The updating mechanism (6)-(7) can be viewed as policy
iteration. Let

Vk(x(0)) = xT (0)Pkx(0)

be the cost to go function evaluating the cost in (3) with
u(t) = Kk+1x(t) as the controller. A good property of the

iteration algorithm is the monotonic decreasing of Pk during
the evolution:

Pk � Pk−1. (8)

As a result, Kk+1 is still stabilizing and actually yields a bet-
ter performance. Solving for Pk from (6) is policy evaluation,
and the updating of Kk+1 in (7) is policy improvement.

B. Model-Free RL for the Damped LQR

The model-free RL algorithm is to achieve policy iteration
without having the explicit information of the dynamics
model, while instead, based on control input and state data
only.

Let Ak = A−BKk. Based on system dynamics in (3), the
updating laws of Pk and Kk+1, we study the value function
change for a given policy Kk+1 during the evolution of the
original system in (1) in time interval [t, t+ δt]:

xT (t+ δt)Pkx(t+ δt)− xT (t)Pkx(t)

=

∫ t+δt

t

[
xT (ATk Pk + PkAk)x+ 2(u+Kkx)TBTPkx

]
ds

=

∫ t+δt

t

xT (2αPk −Q−KT
k RKk)xds+

2

∫ t+δt

t

(u+Kkx)TRKk+1xds,

(9)

where the last equality is obtained based on (6) and (7).
Define the mapping µ(·) : Rn → Rn(n+1)/2 on vector

y = (y1, ..., yn)T ∈ Rn and the mapping ν(·) : Rn×n →
Rn(n+1)/2 on matrix X = [Xij ] such that

µ(y) = (y2
1 , y1y2, ..., y1yn, y

2
2 , y2y3, ..., yn−1yn, y

2
n)T ,

(10)
ν(X) = (X11, 2X12, ..., 2X1n, X22, 2X23, ..., Xn−1,n, Xnn)T .

(11)
We also let

δxx =
[
µ(x)|δt0 , ..., µ(x)|Zδt(Z−1)δt

]T
∈ RZ×n(n+1)/2, (12)

Ix =

[∫ δt

0

µ(x)ds, ...,

∫ Zδt

(Z−1)δt

µ(x)ds

]T
∈ RZ×n(n+1)/2,

(13)

Ixx =

[∫ δt

0

(x⊗ x)ds, ...,

∫ Zδt

(Z−1)δt

(x⊗ x)ds

]T
∈ RZ×n

2

,

(14)

Ixu =

[∫ δt

0

(x⊗ u)ds, ...,

∫ Zδt

(Z−1)δt

(x⊗ u)ds

]T
∈ RZ×mn.

(15)
Then equation (9) is equivalent to

Θk(α)

 ν(Pk)

vec(Kk+1)

 = Ξk, , (16)

where Θk(α) = (δxx − 2αIx,−2Ixu(In ⊗ R) − 2Ixx(In ⊗
KT
k R)) ∈ RZ×[n(n+1)/2+mn], Ξk = −Ixν(Q+KT

k RKk) ∈
RZ .



Assumption 2. rank((Ix, Ixu)) = n(n+1)
2 +mn.

If the data set D satisfies Assumption 2, then solving the
least squares problem (16) is equivalent to updating Pk and
Kk+1 according to (6) and (7). Noe that the data set D can be
independent of the control policy Kk to be updated. Hence,
the RL algorithm based on solving (16) is off-policy.

C. RL without Stabilizing Initialization

It has been shown in [6] that under Assumptions 1 and 2,
with a stabilizing gain at hand, the optimal controller K∗ for
problem (1) can be obtained by repeatedly solving (16) with
α = 0. In this subsection, we propose a model-free approach
for seeking K∗ without having a stabilizing gain in advance.

Observe that if α is sufficiently large, (A − αI,B) is
always stabilizable. In this work, we will start with a suffi-
ciently large α0 such that K(0) = 0m×n is stabilizing, i.e.,
A−α0In is Hurwitz. Then we decrease αk until (A−αkI,B)
is not stabilizable. Under Assumption 1, αk converges to 0 as
k → ∞. Different from [14], we will propose a model-free
approach and specify the updating laws for α and K.

The fundamental idea is to update αk+1 and Kk+1 alter-
natively. During each iteration, we firstly find the minimum
αk+1 such that A − BKk − αk+1In is stable, then update
Kk+1 such that A − BKk+1 − αk+1In is stable. The
minimum αk+1 can be obtained by solving the following
optimization:

min
αk+1,Pk,Kk+1

αk+1

s.t. αk+1, Pk,Kk+1 satisfies (16),

||Pk − Pk−1|| < σ,

Pk � 0, αk+1 ≥ 0,

(17)

where σ > 0 is a predefined constant. Here σ can be any
positive constant. Note that if σ is very large, the solution
αk+1 to (17) may render A − αk+1I − BKk very close to
an unstable matrix, thereby leading to a matrix Pk with very
large eigenvalues. Hence, the second constraint in (17) is to
restrict ||Pk||.

The solution to (17) always makes A − αk+1In − BKk

stable because the corresponding Pk, which is actually the
solution to (6) for αk+1, is positive definite. Moreover, the
corresponding Kk+1 must be stabilizing for A − αk+1In
because it is actually the policy improvement result (7).

Observe that both αk+1 and Pk are variables in (17), mak-
ing the optimization (17) nonlinear. In fact, in our algorithm,
we do not need the exactly optimal solution to (17). Hence,
we will solve for an approximate optimal solution by using
Algorithm 2. The RL algorithm for solving Problem 1 is
given in Algorithm 1, which contains Algorithm 2 as the
policy improvement step.

Remark 1. Since η = α0/S in Algorithm 2, theoretically
αk converges to 0 if it is decreased by η for S times. In
numerical simulations, there may be errors when computing
η. As a result, αk may be a small scalar when αk < η.
However, this error can be avoided by first giving η, and

Algorithm 1 Alternating RL Algorithm for Problem 1
Input: Q, R, D = {x(t), u(t), t ∈ [0, Zδt]}, η = α0/S with
S ∈ N+, α0 > 0, threshold ε > 0.
Output: K∗.

1. Set k ← 0, K0 ← 0m×n, and P−1 ← 0n×n. Compute δxx,
Ixx, Ixu and Ξk.

2. while αk ≥ η
Obtain αk+1, Pk and Kk+1 by implementing Algorithm 2,
set k ← k + 1.
end while

3. while ||Kk+1−Kk||
||Kk||

≥ ε
Set αk+1 = 0. Obtain Pk and Kk+1 by solving (16).
Set k ← k + 1.
end while

4. Set K∗ = Kk+1.

Algorithm 2 Updating αk+1, Pk, Kk+1 for Problem 1
Input: δxx, Ixx, Ixu, Ξk, P = Pk−1, K = Kk, αk, σ > 0, step
size η = α0/S with S ∈ N+.
Output: αk+1, Pk, and Kk+1.

1. Set l = 0.
2. while αk ≥ η
3. Set αk+1 ← αk − η. Compute Θk(αk+1).
4. Obtain Pk and Kk+1 by solving (16).
5. if Pk � 0 and ||Pk − Pk−1|| < σ

Set αk ← αk+1, P ← Pk, K ← Kk+1, l← l + 1
else
Go to step 7.
end if

6. end while
7. if l = 0

Set αk+1 ← αk, obtain Pk and Kk+1 by solving (16).
else
Set αk+1 ← αk, Pk ← P , Kk+1 ← K.
end if

then selecting a large enough S such that α0 = Sη renders
A− α0In stable. Then for any step k, αk = 0 if αk < η.

Theorem 1. Suppose Q � 0. Under Assumptions 1, 2, by
implementing Algorithm 1, there exist η > 0 and S0 > 0,
such that if S ≥ S0, then Kk converges to the optimal control
gain as k →∞.

Remark 2. In practice, matrix Q in the LQR problem
may not satisfy the positive definiteness assumption. In this
scenario, we can firstly obtain a stabilizing gain by imple-
menting Algorithm 1 with an artificially designed positive
definite Q′, then run a conventional ADP algorithm, e.g., [6],
to learn the optimal controller for the original LQR problem.

III. LEARNING A DISTRIBUTED STABILIZING
CONTROLLER

Suppose that the system in (1) is a heterogeneous multi-
agent system with N agents, where the system equation for
each agent is written as

ẋi = Aiixi +
∑
j∈Ni

Aijxj +Biui, i = 1, ..., N, (18)

where xi ∈ Rn̄i and ui ∈ Rm̄i are the state and control input
of agent i, respectively, Aij ∈ Rn̄i×n̄i , and Ni is the set of



agents whose dynamics are coupled with agent i. Note that
different agents may have different dimensions for states and
control inputs.

Define n =
∑N
i=1 n̄i and m =

∑N
i=1 m̄i. Let x =

(xT1 , ..., x
T
N )T , u = (uT1 , ..., u

T
N )T , A = [Aij ] ∈ Rn×n with

Aij = 0n̄i×n̄j
for (i, j) /∈ E and B = diag{B1, ..., BN} ∈

Rn×m. Then we are able to write the compact system
dynamics as

ẋ = Ax+Bu. (19)

Let an undirected graph G = (V, E) denote the communi-
cation graph interpreting the desired interaction relationship
among agents. Here V = {1, ..., N} is the set of agents,
E ⊂ V×V is the set of edges specifying those pairs of agents
that are able to utilize information of each other. Our goal
is to find a structured stabilizing gain matrix K ∈ Rm×n for
the multi-agent system (18) such that the controller of agent
i determined by u = −Kx involves the state of agent j if
and only if (i, j) ∈ E . In other words, the goal is to find K
such that A−BK is stable, and K ∈ SK(G), where the set
SK(G) is defined as follows:

SK(G) = {K ∈ Rm×n : K(i, j) = 0m̄i×n̄j if (i, j) /∈ E},
(20)

where K(i, j) is a submatrix of K composed of elements
from the (

∑i−1
k=1 m̄k + 1)-th to

∑i
k=1 m̄k-th rows and from

(
∑j−1
l=1 n̄l + 1)-th to

∑j
l=1 n̄l columns of K.

The problem we aim to solve in this section is formally
stated as follows:

Problem 2. Given a collection of data D = {x(t), u(t), t ∈
[0, Zδt]} with δt > 0 and Z ∈ N+ for the linear continuous-
time system in (18), find a control gain matrix Kd ∈ SK(G)
such that A−BKd is stable.

Under Assumptions 1 and 2, by artificially designing a cost
function in (1) with Q = In and R = Im, and implementing
Algorithm 1, we can obtain a stabilizing gain Ks when αk
converges to 0. Next we show how to obtain a distributed
stabilizing gain Kd based on an available stabilizing gain
Ks.

Similar to (20), define

SP (G) = {P ∈ Rn×n : P (i, j) = 0n̄i×n̄j
if (i, j) ∈ E},

(21)
SR = {R ∈ Rm×m : R(i, j) = 0m̄i×m̄j

if i 6= j}. (22)

The following lemma is the theoretical foundation of our
approach.

Lemma 1. There exists a distributed stabilizing gain Kd ∈
SK for (18) if the following problem is feasible:

find P

s.t. (A−BKs)
TP + P (A−BKs) ≺ 0,

P ∈SP (G), P � 0.

(23)

Proof. Suppose that Pd is a solution to (23). Denote

D = −
[
(A−BKs)

TPd + Pd(A−BKs)
]
� 0.

For any R′ � 0 such that R′ ∈ SR, choose s > 0 such that
sD � KT

s R
′Ks. Then sPd is still a solution to (23). Let

Q′ = sD−KT
s R
′Ks. Let Kd = sR′

−1
BTPd. We can view

Kd as a policy improvement from the current policy Ks for
the following cost function:

Jk(x(0), u) =

∫ ∞
0

(xTQ′x+ uTR′u)dt. (24)

Therefore, Kd is stabilizing as well. Moreover, since B and
R′ are block-diagonal and P ∈ SP (G), we have Kd ∈ SK .

In a model-free way, similar to the last section, (23) can
be transformed to the data-based form:

find Pd, D,E

s.t. Θ(Ks)

 ν(Pd)

vec(E)

 = −Ixν(D),

D � 0, Pd ∈ SP ,Pd � 0,

(25)

where Θ(Ks) = (δxx,−2Ixu(In⊗R)−2Ixx(In⊗KT
s R)) ∈

RZ×[n(n+1)/2+mn]. According to (16), we know that for
any solution {Pd, D,E} to (25), it actually holds that E =
R−1BTPd. Here matrix R � 0 is artificially designed and
will be used to compute Θ(Ks).

Next we transform (25) to a semi-definite program (SDP),
by converting positive definite constraints to positive semi-
definite constraints. Note that for any solution {Pd, D,E} to
(25), {sPd, sD, sE} for any s > 0 is still a solution. That is,
once (23) is feasible, there must exist a solution {Pd, D,E}
to (23) such that D � cIn and Pd � cIn for any c > 0.
In practice, there may be a desired range for the traces of
the solution matrices. Without loss of generality, we aim to
solve the following linear SDP:

min
Pd,D,E

trace(Pd)

s.t. Θ(Ks)

 ν(Pd)

vec(E)

 = −Ixν(D),

D � cIn, Pd ∈ SP (G), Pd � cIn,

(26)

where c > 0 is artificially given depending on the require-
ment in practice.

Lemma 2. Under Assumption 2, (23) is feasible if and only
if (26) is feasible.

Proof. Sufficiency. By following similar lines to the proof
of [6, Lemma 6], the validity of Assumption 2 implies that
a solution {Pd, D,E} to (26) must satisfy

−D = (A−BKs)
TPd + Pd(A−BKs). (27)

Therefore, Pd must be a solution to (23).
The necessity can be proved by noting that for any solution

Pd to (23), sPd with any s > 0 is still a solution.

Now we present Algorithm 3 as the algorithm for learning
a distributed stabilizing controller for (18).



A =



0.48 0.23 0.89 0.86 0 0

0.12 0.07 0.16 0.73 0 0

0.64 0.03 0.57 0.71 0.65 0.30

0.47 0.16 0.62 0.25 0.13 0.67

0 0 0.40 0.95 0.11 0.63

0 0 0.14 0.69 0.90 0.08


, B =



0.37 0 0

0.92 0 0

0 0.09 0

0 0.52 0

0 0 0.91

0 0 0.31


. (29)

Algorithm 3 RL Algorithm for Problem 2
Input: D = {x(t), u(t), t ∈ [0, Zδt]}, R′ ∈ S+ ∩ SR, α0 > 0,
c > 0.
Output: Kd.

1. Set Q = In, R = Im. Implement Algorithm 1 until αk = 0,
obtain a stabilizing gain Ks.

2. Solve SDP (26), obtain solution {Pd, D,E}. Let Kd =
sR′
−1
E, where

s ≥ λmax(KT
s R
′Ks)

λmin(D)
. (28)

The block-diagonal input matrix R′ in Algorithm 3 can
be designed depending on the requirement in practice, which
affects the obtained control gain. The simplest way to design
R′ is setting R′ = Im. The coefficient s in Algorithm 3
makes the resulting Kd stabilizing as long as it satisfies (28).

Theorem 2. Under Assumption 2, if (23) is feasible, then
Algorithm 3 solves Problem 2.

Proof. The formula for s in (28) ensures sD � KT
s R
′Ks.

By following similar lines to the proof of [6, Lemma 6],
a solution {Pd, D,E} to (26) satisfies E = R−1BTPd =
BTPd. Together with the proof of Lemma 1, we obtain that
Kd = sR′

−1
E = sR′

−1
BTPd ∈ SK is stabilizing.

Remark 3. Both Algorithm 1 and Algorithm 3 are central-
ized because both (16) and (26) involve the overall control
input u and state x for the system. However, the controller
obtained by implementing Algorithm 3 is distributed, because
the controller of each agent only involves its neighbors’ state
information.

IV. SIMULATIONS

Consider a multi-agent system (18) with 3 agents. The
overall system matrix and control input matrix are given in
(29). The interaction topology is considered to be consistent
with inter-agent dynamics coupling relationship reflected
by matrix A shown in Fig. 1. By setting α0 = 2.46,
σ = 100, η = 0.001, Q = I6, R = I3, the result of
implementing Algorithm 1 is shown in Fig. 2. Observe that
as αk+1 evolves, λmax(Pk) may be increased or decreased.
Once αk+1 converges to 0, λmax(Pk) keeps decreasing, and
ultimately converges to λmax(P ∗), where P ∗ is the optimal
cost to go matrix for (1). Moreover, Kk asymptotically
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Fig. 1: The desired interaction graph.
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Fig. 2: The results by implementing Algorithm 1.

converges to the optimal control gain, which is as follows:

K∗ =


3.51 0.86 3.82 2.53 0.62 0.23

4.36 0.05 5.59 4.34 1.63 1.32

1.75 −0.01 3.17 3.09 2.45 2.18

 . (30)

By taking K∗ as the stabilizing gain matrix Ks and
implementing Algorithm 3 with c = 100 and R′ = I3, the
obtained distributed stabilizing control gain is

Kd =


139.55 102.25 73.54 33.76 0 0

174.73 −44 165.15 142.76 4.52 3.97

0 0 91.70 −5.61 179.35 91.79

 .

(31)
The structure of Kd shows that the controllers of agents 1
and 3 do not involve state information of each other, thus
are distributed controllers.



V. CONCLUSIONS

We have proposed two off-policy model-free RL algo-
rithms for the optimal control of general linear systems and
for the distributed stabilization of linear multi-agent systems.
By introducing a damping parameter, the RL-based LQR
control methods can be generalized to scenarios where an
initial stabilizing gain is not available. Once a centralized
stabilizing gain is learned, a distributed stabilizing gain with
a desired distributed structure can be learned for a multi-
agent system. Though both learning algorithms are currently
centralized, we hope to develop a distributed learning scheme
to construct the distributed stabilizing controller.

VI. APPENDIX: PROOF OF THEOREM 1

Before entering into the proof, we first present a support-
ing lemma. Let K∗(α) be the optimal control gain for (2).
The following lemma shows a robustness property of K∗(α).

Lemma 3. Suppose that Q � 0. Given α0 > 0, there exists
δ1 > 0, such that for any α ∈ [0, α0], if ||K−K∗(α)|| < δ1,
then A− αI −BK is stable.

Proof. For simplicity, we denote Aα = A − αIn, K∗α =
K∗(α). From the definition of K∗(α), there exists Pα � 0,
such that

(Aα −BK∗α)TPα +Pα(Aα −BK∗α) +Q+K∗α
TRK∗α = 0,

(32)
Let ∆K = K∗ −K, we have

(Aα −BK)TPα + Pα(Aα −BK)

= (Aα −BK∗α)TPα + Pα(Aα −BK∗α) + ∆KTPα + Pα∆K

= −Q−K∗α
TRK∗α + ∆KTPα + Pα∆K.

(33)

From [14, Corollary 2], K∗α is continuous on α, which
implies that Pα is continuous on α. As a result, there exists
λP such that

λmax(Pα) ≤ λP , α ∈ [0, α0].

Equation (33) means that Aα −BK is stable as long as

λmax(∆KTPα + Pα∆K) < λmin(Q),

which holds if

||∆K|| < λmin(Q)

2λP
, δ1, (34)

here || · || is the induced 2-norm.

Proof of Theorem 1. The updating mechanism of αk+1

in Algorithm 2 implies that αk is nonincreasing in k.
Together with α ≥ 0, we have limk→∞ αk = α∗ for some
α∗ ≥ 0. Note that when αk ≥ η, αk+1 is always obtained
by implementing Algorithm 2. It can be observed that the
outputs of Algorithm 2 always ensure stability of Ak−αkIn.
However, if Ak+1 − (αk − η)In is not stable, αk+1 remains
to be αk while Kk+1 keeps updating.

We now prove that η can be chosen such that αk converges
to α∗ < η as k → ∞. It suffices to show that for any step

k, if αk ≥ η, then there always exists k′ > k such that
A− (αk − η)In −BKk′ is stable, and based on αk − η and
Kk′ , the updated Pk′ satisfies ||Pk′ − Pk′−1|| < σ.

Let α′ = αk − η. Recall that K∗α is continuous on α,
so K∗α is uniformly continuous for α ∈ [0, α0]. Then there
exists δ2 > 0, such that once |α−α′| < δ2, there must hold
that

||K∗α −K∗α′ || < δ1/2,

where δ1 is specified in Lemma 3.
As shown in [6], under Assumption 2, when αk remains

unchanged, and Kk is updated by solving (16), Kk converges
to K∗αk

as k →∞. That is, there exists k′ > k such that

||Kk′ −K∗αk
|| < δ1/2.

When η < δ2, we have

||Kk′ −K∗α′ || ≤ ||Kk′ −K∗αk
||+ ||K∗αk

−K∗α′ || < δ1,

By Lemma 3, A− α′In −BKk′ is stable.
On the other hand, note that the solution Pk to (6) is

continuous on αk+1 and Kk, thus is uniformly continuous
for α ∈ [0, α0] and K ∈ {K ∈ Rm×n : ||K −K∗α|| < δ1}.
As a result, there is δ3 > 0, such that if |αk+1 − αk| < δ3,
then ||Pk − Pk−1|| < σ.

Consequently, once we choose η < min{δ2, δ3} and
S0 ∈ N+ such that α0 = ηS0 renders A − α0In stable,
αk will converge to α∗ < η at some step k′′ > 0, which
implies that α∗ = 0. Continue running Step 3 of Algorithm
1, Kk converges to the optimal control gain K∗ as k →∞.
Moreover, using any integer S > S0 still works since
A− SηIn is stable if A− S0ηIn is stable. �
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