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Model-Free Reinforcement Learning of
Minimal-Cost Variance Control

Gangshan Jing™, He Bai

Abstract—This letter proposes two reinforcement learn-
ing (RL) algorithms for solving a class of coupled algebraic
Riccati equations (CARE) for linear stochastic dynamic
systems with unknown state and input matrices. The CARE
are formulated for a minimal-cost variance (MCV) control
problem that aims to minimize the variance of a cost func-
tion while keeping its mean at an acceptable range using
a noisy infinite-horizon full-state feedback linear quadratic
regulator (LQR). We propose two RL algorithms where the
input matrix can be estimated at the very first iteration.
This, in turn, frees up significant amount of computa-
tional complexity in the intermediate steps of the learning
phase by avoiding repeated matrix inversion of a high-
dimensional data matrix. The overall complexity is shown to
be less than RL for both stochastic and deterministic LQR.
Additionally, the disturbance noise entering the model is
not required to satisfy any condition for ensuring efficiency
of either RL algorithms. Simulation examples are presented
to illustrate the effectiveness of the two designs.

Index  Terms—Reinforcement
dynamic systems, variance control,
equations.

learning, stochastic
coupled Riccati

[. INTRODUCTION

EINFORCEMENT learning (RL) is a powerful learning

method for seeking optimal policies of long-term indices
by adjusting actions according to the reward from an environ-
ment [1]. In the context of control systems, this concept has
been extensively used for learning linear quadratic regulator
(LQR)-type optimal controls for linear time invariant (LTT)
systems with unknown state and input matrices [2]-[5]. A
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specific method for RL, referred to as Approximate Dynamic
Programming (ADP), has been used for solving model-free
optimal control problems for continuous-time systems [6],
discrete-time systems [7], and systems with disturbances [8].

In this letter, we focus on an important class of control prob-
lems in stochastic dynamical systems called minimum-cost
variance (MCV) control. MCV deals with control scenar-
ios when systems are influenced by stochastic disturbances,
the purpose being to minimize a given cost function in
terms of its variance. Examples of MCV include control of
wind plants [9], satellite communication control [10], game-
theoretic control [11], target-tracking of robotic swarms, etc.
Early works on MCV control in continuous-time were reported
in [12], which were later extended in [13] by using the
Halmilton-Jacobi theory to derive a set of coupled algebraic
Riccati equations (CARE) to solve for full-state feedback
MCV. The connections between linear quadratic Gaussian
(LQG) control, risk-sensitive control via cost cumulants, and
MCYV control were also shown. In [14] and [15], the authors
proposed two iterative algorithms for solving the CARE, and
two sufficient conditions for convergence of these algorithms,
respectively. Sufficient conditions for existence and uniqueness
of the solutions to the CARE were given in [14] and [16]. The
work in [17] studied a more general problem of minimizing
the linear combination of the first k cumulants of the cost
function for LQR problems. However, all of these works are
model-based, meaning that the control design is carried out
assuming that the system dynamics are known exactly.

We develop model-free RL algorithms for infinite-horizon
MCYV control of linear stochastic systems with unknown
system and input matrices. Our approach is to solve the CARE
described in [13] using online measurements of the states, the
inputs, and the process noise. In the literature, model-based
optimal control for nonlinear systems with control-dependent
noise was studied in [18]. Model-free LQR with control-
dependent noise was investigated in [19]. However, to the
best of our knowledge, no model-free RL algorithms have
been proposed so far for MCV control. In the MCV con-
trol problem, the two coupled Riccati equations need to be
solved, which intuitively requires more computational com-
plexity for RL compared to conventional LQR. To reduce the
computational complexity, we propose two algorithms where
the input matrix is estimated at the first iteration of the RL.
This is different from the RL algorithm in [19] which estimates
the input matrix in every iteration. Because of this difference,
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our algorithms avoid repeated inversion of a high-dimensional
data matrix, thereby leading to significant reduction in com-
putational complexity in the intermediate steps of the learning
phase. The overall complexity is shown to be less than that of
RL for both stochastic LQR [19] and deterministic LQR [2].
Furthermore, our approach does not require the disturbance
noise to satisfy any algebraic property such as those required
in [19]. The MCV control is a general class of problem that
covers both deterministic and stochastic LQR. Therefore, if
needed, our proposed algorithms can be applied to those two
problems as well with lower computational complexity.

The rest of this letter is organized as follows. Section II for-
mulates MCV control; Section III proposes two RL algorithms
for solving CARE; Section IV provides numerical simulations;
Section V concludes this letter.

Notation: Throughout this letter, I; is the d x d identity
matrix; ® means the Kronecker product; (-, -) is the matrix
inner product defined as (A, B) = tr(ATB); tr(X) means the
trace of matrix X; X > 0 implies that X is positive semi-
definite; A < B for two positive semi-definite matrices A
and B implies that B — A > 0; monotonic decrease in X
implies that X341 — Xg = 0 for k = 1,2,..., vec(X) € an
denotes the vector stacking columns of X € R™" in the
order that they appear in X; mat(x) is a matrix such that
x = vec(mat(x)); Given a symmetric matrix X = [X;;] € R"™",
we define the mapping v(-) : R™" — R as v(X) =

X11,2X12, ..., 2X1n, X22,2X03, ..., 2X0p, . .. ,X,m)T. It is
easy to see that there exists a constant matrix ® € anx@
such that vec(X) = ®v(X) for any X € R™".

Il. PROBLEM STATEMENT
A. MCYV Problem Formulation

Consider the following linear stochastic differential equation
(SDE):

dx = (Ax 4+ Bu)dt + Gdw, x(0) = xo, (1)

where x € R” and u € R™ are the state and the control
input, respectively. System matrix A € R"*" and input matrix
B € R™ ™ are unknown, but their dimensions are known. The
system is excited by stochastic noise induced by a stationary
Wiener process w € R? with zero mean and the correlation of
increments

E[or(r) = w(e) i) = w(e)) | = Win = .

where, E[ - ] denotes the expectation function, and W is a
positive definite matrix. Suppose G € R"*? is known, and the
noise Gdw and the state x are both measurable.! The MCV
control objective is to design u such that the weighted sum of
the mean and the variance (the 2nd cumulant) of the following
objective function is minimized:

1
Jx,u, ty) = / ’ (x" Ox + u" Ru)dr. 2)
0

IThe noise has to be measurable so that the input and state data can describe
the system accurately. Similar assumption has been made in [19].

More specifically, the objective of an infinite-horizon MCV
control is to minimize

ElJ(x, u,t
Jx,u) = lim M—f—y lim
tf—)

° I

Var[J(x, u, 1) ]

k]

where y is a positive constant, and Var[ - ] denotes variance.
Lemma 1 [14]: The optimal control law for the infinite-
horizon optimal control problem has the form

u=Kx=—-R"'B"(M+ yH)x, (3)
where y > 0, and M and H satisfy the following CARE:

AT™M+MA+Q—MBR'B"M + y*HBR"'BTH =0, (4)
A"H+HA—MBR'B'"H—HBR™'B"M
— 2yHBR™'B"H + 4MGWG "M = 0. 5)

Lemma 1 can be viewed as a special case of [17, Th. 4.4.1]
with k = 2. The parameter y > 0 can be viewed as the
weight of the second cumulant (variance) in the objective
function, which implies that the larger y is, the smaller the
variance corresponding to the optimal solution is. If there is
a unique pair (M, H) satisfying the above CARE, then the
corresponding controller will be optimal. Otherwise any pair
(M, H) satistying (4-5) is a local optimal controller [14], [17].
Conditions for uniqueness of the solution to (4-5) were
presented in [14], [16]. For our design we will solve the
CARE (4)-(5) when A and B are unknown.

Remark 1: Note that the MCV control problem reduces to
the deterministic LQR problem when G is a zero matrix, and
to a mean cost minimization problem when y = 0. As a result,
the algorithms we propose in this letter can alternatively be
applied to these two problems as well.

B. Two Model-Based lterative Algorithms
Substituting K from (3) into (4)-(5) yields

(A+BK)'M+MA+BK)+K'RK+0=0. (6
(A+BK)'H+ H(A + BK) + 4MGWG "M = 0.  (7)

Similar to the Kleinman’s algorithm [20] for solving the
conventional algebraic Riccati equations that arise in LQR,
two iterative algorithms for solving the CARE in (4)-(5) are
presented in [14] and [15]. For easy referencing, we recall
these two algorithms in Algorithm 1 and Algorithm 2, respec-
tively. However, compared to the Kleinman’s algorithm, even
when Kj is chosen to be stabilizing, My and Hj obtained from
Algorithms 1 and 2 may not be monotonically decreasing, and
so Kj; may become destabilizing at some step k > 1. In [14]
and [15], the authors proposed conditions for convergence
under which the matrix My + y Hy is monotonically decreas-
ing, and Kj is guaranteed to be stabilizing. Accordingly, we
will develop two RL algorithms that will recover the solutions
of Algorithm 1 and Algorithm 2, while matrices A and B are
unknown. Note that both Algorithms 1 and 2 can be viewed
as policy iteration algorithms [6], where step 2 and step 3
correspond to policy evaluation, while step 4 corresponds to
policy improvement.

A common property of Algorithm 1, Algorithm 2 and
Kleinman’s algorithm [20] is that they all require the initial
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Algorithm 1 Iterative Algorithm for MCV From [14]
1. Choose an initial gain Ko such that Ag = A + BKj is
stable. Let k = 0.
2. Obtain Mj by solving

Al My + MiAi + K RKi + Q = 0,
where Ay = A + BKj.

3. Obtain Hy by solving
Al Hi + HAy + 4MGWG "My = 0.

4. Compute Ky = —R™'BT(M; + yHy).
5. For a given threshold € > 0, check the condition:
o IKk+1 — Kill
| K|l
6. If the above condition does not hold, then k < k + 1

and go back to step 2; Otherwise the optimal controller
is u* = Kiq1x.

o

Algorithm 2 Iterative Algorithm for MCV From [15]
1. Choose an initial gain Ko such that Ag = A + BKj is
stable, and choose a positive semi-definite matrix Mj.
Let k = 1.
2. Obtain Mj by solving

AL\ My + MyAg—y + K/_|RKi—1 + Q = 0,

where Ap_| = A + BKj_1.
3. Obtain Hy by solving

AkT_lHk + HAp 1 + 4Mk_1GWGTMk_1 =0.
4. Compute Ky = —R'BT (M, + yHy).
5. For a given threshold € > 0, check the condition:
o 1K= Kl
Il Kkl

6. If the above condition does not hold, then k < k+ 1
and go back to step 2; Otherwise the optimal controller
is u* = Kx.

o

control gain Ky to be stabilizing. These algorithms will either
not converge or converge to an incorrect matrix if Ko is desta-
bilizing. Accordingly, the RL algorithms that we will propose
based on Algorithms 1 and 2 will require Ky to be stabilizing
as well, similar to the assumption made for the RL algorithms
reported in [2], [3], [5], [19].

Remark 2: The main differences between Algorithm 1 and
Algorithm 2 are as follows: 1) the first step of Algorithm 2
requires an artificially selected My, which may influence its
convergence; Algorithm 1, however, does not need a matrix
M at the first step; 2) the update steps for Hy are different for
the two algorithms. At step k in any iteration of Algorithm 1
the update of Hy requires one to solve M} in advance, while in
Algorithm 2 the update of Hy is based on My_1, and so Hj and
M, can be updated simultaneously. As a result, one advantage
of Algorithm 2 is that the two Lyapunov equations can be

solved in parallel. Moreover, Algorithm 1 and Algorithm 2
may be efficient for different classes of MCV problems [14].

IIl. RL ALGORITHMS FOR MCV CONTROL

In this section, we present two off-policy algorithms that can
recover the solutions of Algorithm 1 and Algorithm 2 when
matrices A and B are unknown.

A. RL Algorithm for Iterative Algorithm 1

To design the RL algorithm, we will transform the model-
based Lyapunov equations in Algorithm 1 to a set of equations
that are based on input and state data only by utilizing the
system dynamics (1). We first differentiate x ' Myx and x " Hyx.
By Ito’s lemma (see 5.3.9b in [22]) and using the Lyapunov
equations in Algorithm 1, we get

d(x" Myx) = x" (A] My + MyA)xdt + 2x " My Budt
— 2x " MyBKxdt + 2x" MyGdw + t(G T MyG)dt
= —xTK,:rRkadt — xTQxdt + 2xTMkBudt

n n
— 2x MiBKixdt +2x  MiGaw + Y > g Mygjdt, (8)
i=1 j=1
and
d(x"Hyx) = x" (A] Hy + HiAr)xdt 4 2x " HyBudt
— 2x " HyBKjxdt + 2x " HyGdw + tr(G " HyG)dt
= —4x' MyGWG " Mixdt + 2x " HyBudt

n n
— 2x HiBKyxdt + 2x" HiGaw + > Y g Higjdr, (9)
i=1 j=1
where g1, ..., g, are column vectors forming G. Integrating
both sides of (8) on time interval [z1, 1], we get

t 15 19}
f d(xTka) = —[ xTK,;rRkadt — / xTQxdt
151 1

3|

t 5]
+ f 2x " MyBudt — f 2x " MyBKxdt
n

n
t fpp noon
+ / 2x" My Gaw + / 3N gl Mgy,
hn =1 j=1
which is equivalent to

I t,
(/zd(xxT),Mk) = (/2xdet, K RK; — Q)
f

n

%) n
+ ( / 2ux'dt, MyB) — ( / 2xx | dt, M BKy)
4

n

t fpp noon
26T )+ 303 el dn M,
1 t

I =1 j=1
Similarly, for (9), we have

15} 15)
(/ dx"), Hy) = —([ 4xx T dt, MGWG T My)
n 1

[5) 19}
+( / 2ux' dt, HiB) — ( / 2xx " dt, HBKy)

I I

th th N n
-+ / 2Gdwx ", Hy) + / YD gel di Hy).
131 n

i=1 j=1
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We further define

- T
b = [x0 @200, . x0 @ xI], | e R

t Ip i 2
Ly = / x®xdt,...,/ xQxdt | e R,
to -1

- T
1 Ip
Ly = /x@udr,...,/ x®ud1] e Rpxmn
1 t

0 p—1

151 Ip ’ 2
Ly = / x®de,...,/ x®@ Gdw| eRP",
1o Ip—1

] T
n n H tp ,
‘Sgg:ZZ[/to gi®gjdt,...,/ gi®g/dt] e RPX1"

i=1 j=1 Ip-1

As Gdw is known, combining (8) and (9), we have

®k< vec(My)

Vec(BTMk)) = Bk (10)

O = [axx — Dy — Sgg. —2y + 2 (I ® K, )] e RPX (P Hmn)
Er = —Iuvec(K] RK; + Q) € RP.

Moreover,

®k< vec(Hy) (11

Vec(BTHk)> =,

where Q; = —41,vec(MyGWG My) € RP.

Following similar approach as in [19], an iterative RL
algorithm can be easily derived. However, we notice that
solving (10) and (11) in the least squares sense would be time-
consuming, especially if the system order n is large. We next
show that the dimension of the least squares equations to be
solved in the RL algorithm can be reduced extensively by
estimating B in the first iteration.

We define I, such that

Lyevee(X) = Lov(X)

where I, = I, ® = [ftf)‘ uxdrz, ..., ;pil w(x)dr]". Here the

mapping p(-) : R" — R"(n;” on vector y = (y1,...,yn) | €
R”" is defined as:
L) = O V120 -+ oy Y10 Y35 Y23+« o Yne1Vns Vo) |-

Note that matrix B can be estimated by solving the least
squares problem only once. Once B is known, the variable
BTM; can be eliminated as shown in the following lemma.
Lemma 2: Suppose rank [Iy, I,] ”("TH) + mn. Let
vee)) e the solution of (10) with k = 0, then B =
vec(N)
M7INT.
Proof: From the definitions of ®¢ and Eg, (10) implies that

(Oxx — 2Ly — Sgg)vec(M) + [ — 2Ly + 210 (I ® K()T)]Vec(N)
= —Ivec(K, RKo + Q. (12)

Algorithm 3 RL Algorithm Corresponding to Algorithm 1
1. Given an initial stabilizing gain K. Let k = 0.
2. Apply u = Kox +e(t) to (1) on time interval [fo, #,] until
rank [y, [,] = w+mn. Compute ®p and Ep. Obtain
the solution (Z/ZE((A]\{))) to (10) with k& = 0. Compute
B=M"'NT, and let My = M.
3. Compute Ak, Bk, Q and T = (A A ~'A[.
4. Compute My = mat(TyEr), Hy = mat(Tx2), and

Kiy1 = —R7'BT(My + yHy) successively. For given
threshold € > 0, check the following condition
o IKk+1 — Kill
o= ——-
I Kkl

If the condition does not hold, let k <— k4 1 and go back
to Step 3; Otherwise go to Step 5.
5. The optimal controller is u* = Kj41x.

By using the first equality in (8), we have
Sxxvec(M) = Lyvec(Ag M + MAo) + 2Ly, vec(B' M)
— 2Uyvec(Ky BT M) + 2Uy,vec(M) + 8ggvec(M). (13)
Combining (12) and (13), yields
Jé T T T TpT
wvec(A) M 4+ MAy + K, RKo + Q + 2K, N — 2K, B' M)
+ 2Iy,vec(N — BT M) = 0,
which is equivalent to
Lv(Ag M + MAo + K) RKo + Q + 2K N — 2K B' M)
+ 2L, vec(N — B'M) = 0.

Since [Iy, I,] is of full column rank, we have N=B'M. ®

By virtue of Lemma 2, we can estimate B after the first
iteration k = 0. For k > 1, equations (10) and (11) can be
modified as the following two equations:

Arvec(My) = B
Apvec(Hy) = Qp

(14)
15)

where Ay € RP xn? g given by

Ak = 8xx — 2Ly — 8gg — 2Ll ® BY) + 2L (1, K BT).

In this case, the most time-consuming part of the least squares
step is computing the inverse of AZAk € R”*" In the orig-
inal least squares problem, one has to compute the inverse
of ®] O € R +mm)x(w+mm) - Gince the computational com-
plexity associated with inverting an n-dimensional matrix
is Om23% 211, by reducing the dimension of the least
squares problems, the computational complexity is signifi-
cantly reduced.

Let e(#) be the exploration noise applied in the control input
at time ¢, which is used to generate input and state information
such that the rank condition in Lemma 2 can be satisfied. The
RL algorithm is given in Algorithm 3. Note that Algorithm 3
is an off-policy algorithm since the control input applied to
the system for generating data is independent of the policy
updated during each iteration.
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Remark 3: The main innovation of our proposed RL is
that although there are two Riccati equations to solve in
Algorithm 1, estimating B in the very first step in Algorithm 3
allows us to solve the inverse of A;Ak e Rx only once
per iteration, otherwise we will have to solve the inverse
of @,j@k € RO Hmm)x (n*+mn) during each iteration. Thus,
estimating B saves significant amount of computational com-
plexity. For example, the dimension of the same matrix that
needs to be inverted in [2] is %n(n+ 1)+mn , and that in [19] is
2n% 4 mn. Our algorithm, therefore, will be significantly faster
than RL for noisy LQR [19], and usually faster than RL for
deterministic LQR [2]. This also implies that Algorithm 3 is
advantageous when it is applied to deterministic LQR or mean
minimization for noisy LQR. The same is true for Algorithm
4 that will be presented next.

Theorem 1: 1f rank [Iy, L] = " + mn for each k € N,
then rank(Ay) = n? for each k € N. Moreover, with the same
initial condition, Algorithm 1 and Algorithm 3 generate same
My, and Hj at each step k.

The proof for Theorem 1 is similar to that in [2], and
therefore is omitted here.

It is important to note that unlike [19], which also addresses
a model-free noisy LQR problem, the rank condition here is
independent of the noise induced term I,,. To satisfy the rank
condition in Algorithm 3, one should choose an exploration
noise e(f) to be persistently exciting, and collect data for long
enough time. Usually e(?) is chosen as a sum of sinusoidal
functions with a sufficient number of distinct frequencies.

B. RL Algorithm for Iterative Algorithm 2

Similar to the first design, for Algorithm 2 we have
d(xTka) = —xTK,;r_lRKk_lxdt —x' Oxdt + ZxTMkBu

n n
dt — 2" MiBK—yxdt +2x T MGaw + ) > g Mygjd
i=1 j=1

and

d(x"Hyx) = —4x"My_GWG " My_xdt + 2x" HyBudt
n n

—ZxTHkBKk,lxdt + ZxTHkGdW + Z Z giTHkgjdt.
i=1 j=1

By defining 68y, Ixx, Low, Lw and &g, the same as before,
we get

vec(Hy)

vec(BT Hy) (16)

vec(My)
k vec(BT My)

) = (E, )

where O =[Sy — 2Ly — 8gg. —2Lu + 2I(l, ® K] )] €
]Rpx(n2+mn)’ B = — xxveC(K]j_lRKk—l +0) e R, Q4 =
—4] vec(My_1GWGTM;_;) € RP. Note that different from
Algorithm 1, where matrices My and Hj have to be obtained
sequentially, in Algorithm 2, M; and Hj can be computed
simultaneously. This is because in Algorithm 2, €2 is based
on Mj_; instead of M.

Algorithm 4 RL Algorithm Corresponding to Algorithm 2
1. Start with an initial stabilizing gain Ky. Let k£ = 1.
2. Apply u = Kox +e(?) to (1) on time interval [fo, #,] until
rank [Lyy, Iy, ] = w + mn. Choose a positive semi-
definite My, comSute ®1, 81 and 1. Obtain the solution

(z‘zz((%)) tzzgg to (16) with k = 1. Compute B =
M~ INT,Ki = —R7'BT(M + yU) and let k < k + 1.

3. Compute Aj, Ex and €2, obtain My and Hy by solving
(17) in the least square sense.

4. Compute Ky = —R~'BT (M} + y Hy). For given threshold
€ > 0, check the following condition

2 Kk = Kitl
(I Kl
If the condition does not hold, let k <— k4 1 and go back

to Step 3; Otherwise, go to Step 5.
5. The optimal controller is u* = Kjx.

o

Similar to Lemma 2, matrix B can still be estimated in the
first iteration. The difference is that unlike Algorithm 1, B in
this case will be estimated from (16) with k = 1 (instead of
k = 0). Once B is obtained, (16) is reduced to

Ax(vec(My)  vec(Hy)) = (Ex, ) (17)

where Ay = 8y — 2Ly — 8gg — 2Ly (I, ® BT) + 21 (I, ®
K,j;lBT) e RP*". The RL for Algorithm 2 is given in
Algorithm 4.

Theorem 2: 1f rank [Iy, L] = " + mn for each k € N,
then rank(Ay) = n? for each k € N. Moreover, with the same
initial configuration, Algorithm 2 and Algorithm 4 generate
same M} and Hj at each step k.

IV. SIMULATION RESULTS

We consider a 2"?-order example. Although the system size
is small, we still choose this example as it has been used as a
benchmark example for MCV control in [14], [15]. Consider

1 1L 1 0 1
— 8 — = = = — —
A 0 4/ B 0o 2) G L, Q0=4, R=W =1,.

We set y = 3/8, the initial gain Ko = diag{—2, 3}, and the
100
excitation noise e(f) = 100 )_ sin(w;#), where w; is selected

from [—500, 500] randomlyﬁl: 1,...,100.

To compare our RL algorithms with their model-based
counterparts we first run Algorithm 1 with € = 1075, It is
observed that M and K converge to

 — (3.2594 0.0519> P (—3.5995

0.0519 2.4175 —0.1161

—0.0581
—4.9976 )°

Next, we run Algorithm 3. The closed-loop response of x(f)
is shown in Fig. 1(a). It can be seen that K; converges to a
stabilizing gain. Fig. 1(b) shows that the algorithm converges
to the same result as the model-based Algorithm 1. Fig. 1(c)
shows that during the learning phase both M} and Ly = My +
y Hy are monotonically decreasing, but Hj is not monotonic.

To run Algorithm 4, we set My = 0242. We find that
Algorithm 2 and Algorithm 4 converge to the same M* and
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— K KT
— M, Ml
IHH T

State x

—max(eig(L,,-L,)
— max(eig(M,,,-M,))
/ max(eig(H,,H,))

Evolution of Errors
Evolution of Maximum Eigenvalue

Hteration Step k Iteration Step k

Time t

(a) (b) ©)

Fig. 1. (a). Evolution of x under Algorithm 3; (b). Evolution of || K — K*||,
|Mx — M*| and ||Hy — H*|| under Algorithm 3; (c). Evolution of maximum
eigenvalues of My 1 — My and Ly, 1 — L under Algorithm 3.
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Fig. 2. (a). Evolution of x under Algorithm 4; (b). Evolution of || K — K*||,
My — M*|| and ||Hy — H*| under Algorithm 4; (c). Evolution of maximum
eigenvalues of Ly 1 — Ly, My 1 — My and Hy_ 1 — Hj under Algorithm 4.

K* as those obtained by Algorithm 1. We plot the closed-loop
trajectories of the state vector x(¢) in Fig. 2(a), evolution of the
errors ||Ky — K*|, |My —M*| and ||Hy — H*|| in Fig. 2(b), and
evolution of the maximum eigenvalues of Ly —Ly, My4+1—My
and Hy4+1 — Hy in Fig. 2(c). It can be observed that, although
starting from a different initial point, and using a different
updating mechanism, Algorithm 2 and Algorithm 4 eventu-
ally obtain the same optimal control gain as that obtained by
Algorithm 1 and Algorithm 3.

We also tested a 10-dimensional example to examine the
computational efficiency of the proposed algorithms. We skip
the details of that example here due to space constraints. For
that example, Algorithms 3 and 4 take 0.1000s and 0.1239s
to complete, respectively; if we do not estimate B in the first
step and replace matrix Ay in Step 4 of Algorithms 3 and 4 by
O, the two algorithms take 0.2141s and 0.2175s, respectively.
This reconfirms how estimating B in the first iteration can
reduce the computational complexity.

V. CONCLUSION

We developed a set of off-policy RL algorithms for solving
CARE encountered in the model-free MCV control problems.
The specificity of the CARE is exploited to make the designs
numerically cheap. Simulations are provided to demonstrate
the numerical effectiveness as well as the ability of the RL
algorithms to recover the optimal control gains produced by
their model-based counterparts.
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