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Online Distributed Optimization With Strongly
Pseudoconvex-Sum Cost Functions
Kaihong Lu , Gangshan Jing , and Long Wang

Abstract—In this paper, the problem of online distributed opti-
mization is investigated, where the sum of locally dynamic cost
functions is considered to be strongly pseudoconvex. To address
this problem, we propose an online distributed algorithm based
on an auxiliary optimization strategy. The algorithm involves each
agent minimizing its own cost function subject to a common convex
set while exchanging local information with others under a time-
varying directed communication graph sequence. The dynamic re-
gret is employed to measure performance of the algorithm. Under
mild conditions on the graph, it is shown that if the increasing
rate of minimizer sequence’s deviation is within a certain range,
then the bound of each dynamic regret function grows sublinearly.
Simulations are presented to demonstrate the effectiveness of our
theoretical results.

Index Terms—Consensus, dynamic regret, multiagent systems,
online distributed optimization.

I. INTRODUCTION

Along with the penetration of multiagent networks [1], [7], dis-
tributed optimization via a network of agents has received increasing
attention in recent years [2]–[6], where the goal of agents is to minimize
the global cost function formed by the sum of local functions via local
information. This is due to its wide practical applications including
distributed localization and estimation [8], energy dispatch in power
distribution networks [9], and distributed machine learning [10].

Recently, some results on online distributed optimization have been
achieved, where cost functions vary over time and changes can only be
seen by agents in hindsight. It is necessary for an online algorithm to
mimic the performance of its offline counterpart, and the gap between
them is called the regret. In [11]–[15], the performance of an online
algorithm is studied by a static regret, where the offline problem is
to minimize the sum of global cost functions at all time. Under the
presented algorithms in [11]–[15], the bound of the static regret just
increases sublinearly.
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Dynamic environments arise in many practical applications. For ex-
ample, when tracking a moving target, one should solve an online
optimization problem where both loss functions and comparators are
time-varying [16]. To adapt to such dynamic environments, dynamic
regrets, where the benchmark is to minimize the global cost function at
each time, are required to measure the performance of online optimiza-
tion algorithms [17]–[20]. The benchmark of dynamic regrets is more
stringent than that of static ones. Using dynamic regrets, the online
optimization problem becomes insolvable in the worst case where ob-
taining sublinear regrets could be impossible. Usually, the difficulty is
characterized via a complexity measure that captures the variation in the
minimizer sequence [17], [19], [20]. In [17], a dynamic mirror descent
algorithm is developed for online programming, where a time-varying
sequence following a given dynamics is involved. In [18], the dynamic
stochastic optimization problem is investigated, where a complexity
measure based on the variations in the cost function is introduced. In
[19], an adaptive algorithm is designed for online optimization, where
the regret bound is expressed in terms of the variations of both the cost
function and the minimizer sequence. In [20], an advanced online dis-
tributed strategy is developed based on the consensus algorithm and the
mirror descent algorithm, where the communication graph is modeled
as a fixed undirected graph and agents track the global minimizer while
exchanging local information. Nevertheless, all the aforementioned in-
vestigations assume that the cost functions allocated to each agent are
convex.

Similar to convex optimization, optimization with strongly pseudo-
convex cost functions, sometimes called strongly pseudoconvex opti-
mization [21], is also a significant problem that remains to be dealt with.
Strongly pseudoconvex optimization may be a nonconvex optimization
problem. It appears in widespread applications such as fractional pro-
gramming [25], economics [26], and frictionless contact analysis [27].
Inspired by [17]–[20], we try to study the optimization problem with
strongly pseudoconvex cost functions in an online and distributed man-
ner.

In this paper, we present an auxiliary optimization-based online
distributed algorithm for online distributed strongly pseudoconvex op-
timization via a network of agents. Under the proposed algorithm, each
agent adjusts its state value by solving an auxiliary optimization prob-
lem involving its own cost function information as well as the local
states information. We employ the dynamic regret to measure perfor-
mance of the algorithm. Different from online convex optimization
[17]–[20], due to pseudoconvexity of cost functions, the basic con-
vex inequality associated with gradients of cost functions, which is
necessary in the analysis of regret bound in [17]–[20], does not hold
any more. This brings challenges to establishing the bound of the dy-
namic regret. We overcome this by using Lipschitz continuity of cost
functions and strong-pseudomonotonicity of cost functions’ gradients.
Moreover, compared with [20], a weaker condition associated with
connectivity of the communication topology is used. We model the
underlying communication topology as a time-varying directed graph
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sequence. We prove that if the graph sequence is B-strongly connected,
then each dynamic regret function is bounded by the product of a term
depending on the deviation of the minimizer sequence and a sublinear
function of the learning time.

This paper is organized as follows. In Section II, mathematical pre-
liminaries on pseudoconvex analysis and graph theory are introduced.
In Section III, we formulate the problem and present the auxiliary
optimization-based online distributed algorithm. In Section IV, we state
our main result and give its proof. In Section V, simulation examples
are presented. Section VI concludes the whole paper.

Notation: We use |a| to represent the absolute value of scalar a. R de-
notes the set of real numbers. N is used to represent the set of positive in-
tegers. For any T ∈ N, we denote set �T � = {0, 1, . . . , T }. Let Rm be
the m-dimensional real vector space. For given vectors x,y ∈ Rm and
matrix P ∈ Rm ×m , we denote 〈x,y〉P = 〈Px,y〉, ‖x‖2

P = xT Px,
‖x‖ =

√
xT x, and ‖x‖1 =

∑m
j=1 |xi |, where xi represents the ith

entry of vector x. For differentiable function f (·) : Rm → R, we de-
note the gradient of f (x) with respect to x by ∇f (x), and use ∇2f (x)
to denote its Hessian matrix. We use In to denote an n × n identity ma-
trix. 1 ∈ Rm denotes the m-dimensional vector with elements being all
ones. For a matrix A, [A]ij denotes the matrix entry in the ith row and
jth column, [A]i · represents the ith row of the matrix A. λm ax (A) and
λm in (A) represent the maximal eigenvalue and the minimal eigenvalue
of A, respectively. We denote ‖A‖ =

√
λm ax (AT A).

II. PRELIMINARIES

A. Pseudoconvex Analysis

Let us begin with introducing some definitions of pseudoconvex
functions and pseudomonotone mappings, which can be found in [28].

Definition 1: A differentiable function f : Rm → R is pseudo-
convex on Ω ⊂ Rm if for every pair of distinct points x,y ∈ Ω,
〈∇f (x),y − x〉 ≥ 0 implies f (y) − f (x) ≥ 0. Moreover, f is β-
strongly pseudoconvex on Ω if for every pair of distinct points x,y ∈
Ω, 〈∇f (x),y − x〉 ≥ 0 implies f (y) − f (x) ≥ β/2‖y − x‖2 with
some constant β > 0.

A well-known Karush–Kuhn–Tucker (KKT) condition, which re-
veals the relationship between pseudoconvex optimization and varia-
tional inequality, is introduced in the following lemma.

Lemma 1 (see [29]). Suppose f : Rm → R is differentiable and
pseudoconvex on convex set Ω ⊂ Rm . Then, x∗ is a minimum point
of f on Ω if and only if the following variational inequality holds:

〈∇f (x∗),x − x∗〉 ≥ 0 ∀x ∈ Ω.

Definition 2: A mapping G : Rm → Rm is pseudomonotone on
Ω ⊂ Rm if for every pair of distinct points x,y ∈ Ω, 〈G(x),y − x〉 ≥
0 implies 〈G(y),y − x〉 ≥ 0. Moreover,G is θ-strongly pseudomono-
tone on Ω if for each pair of distinct points x,y ∈ Ω, 〈G(x),y − x〉 ≥
0 implies 〈G(y),y − x〉 ≥ θ‖y − x‖2 with some constant θ > 0.

Clearly, from Definitions 1 and 2, convexity (respectively, strong
convexity) implies pseudoconvexity (respectively, strong pseudocon-
vexity), and monotonicity (respectively, strong monotonicity) implies
pseudomonotonicity (respectively, strong pseudomonotonicity), but
not vice versa. Actually, a pseudoconvex function may be nonconvex.

B. Basic Graph Theory

The communication graph is denoted by a time-varying directed
graph sequence {G(t)}, t = 0, 1, . . ., where G(t) = (V, E(t),A(t)),
V = {1, . . . , n} is a set of vertices, E(t) ⊂ V × V is an edge set,
and the weighted matrix A(t) = (aij (t))n×n is a nonnegative
matrix for adjacency weights of edges such that aij (t) > � for

some � > 0 if (j, i) ∈ E(t) and aij (t) = 0 otherwise. Denote
Ni (t) = {j ∈ V|(j, i) ∈ E(t)} to represent the neighbor set at time
t. Here, we assume i ∈ Ni (t) for all i ∈ V and t ≥ 0. For a fixed
topology G = (V, E ,A), a path of length r from node i1 to node ir+1 is
a sequence of r + 1 distinct nodes i1 . . . , ir+1 such that (iq , iq+1 ) ∈ E
for q = 1, . . . , r. If there exists a path between any two nodes, then
{G(t)} is said to be strongly connected. For {G(t)}, an B-edge set is
defined as EB (t) = ∪(t+1)B −1

k= tB E(k) for some constant B > 0. We call
that {G(t)} is B-strongly connected if the directed graph with vertex
set V and edge set EB (t) is strongly connected for any t ≥ 0.

Here, we make the following assumptions for the communication
graph.

Assumption 1: A(t) is a doubly stochastic matrix for any t ≥ 0,
which implies that G(t) is balanced for any t ≥ 0.

Assumption 2: {G(t)} is B-strongly connected.
In distributed coordination control, the weak ergodicity of stochastic

matrix chains {A(t)} plays an important role in rendering agents to
reach a common state [1], [2], [22]–[24]. For any t ≥ s, we denote

⎧
⎨

⎩

Φ(t, s) = A(t − 1) · · ·A(s + 1)A(s), if t > s;

Φ(t, s) = In , if t = s.
(1)

Based on [2, Proposition 1], under Assumptions 1 and 2, for any i, j ∈
V and t ≥ s, we have

∣
∣
∣
∣[Φ(t, s)]ij − 1

n

∣
∣
∣
∣ ≤ Hλt−s (2)

where H = 2(1 + �−(n−1)B )/(1 + �(n−1)B ) and λ = (1 −
�(n−1)B )1/ ((n−1)B ) .

Note 0 < λ < 1, by (2), we know that the product of stochastic
matrices A(t) exponentially converges to a rank-one matrix 1

n
11T .

III. PROBLEM FORMULATION

In this section, we will formulate the problem to be studied, and
present an auxiliary optimization-based online distributed algorithm.

A. Online Distributed Optimization

Let us describe a scenario of online distributed optimization. Con-
sider a multiagent system consisting of n agents, labeled by set
V = {1, . . . , n}. Agents communicate with each other via a time-
varying directed graph sequence {G(t)}. For agent i ∈ V , a set of
cost functions are given by {f 1

i , . . . , f T
i }, where f t

i : X → R is twice
differentiable for any t ∈ �T �, T ∈ N is unknown to the agents,
and X ⊂ Rm . At each iteration time t ∈ �T �, agent i selects a state
xi (t) ∈ X. After the state is selected, a local cost function f t

i is re-
ceived by agent i, that is, information on cost functions is not available
before decisions are made by agents. In this scenario, at each itera-
tion time t, the goal of agents is to cooperatively solve the following
optimization problem:

min f t (x) =
n∑

i=1

f t
i (x), subject to x ∈ X. (3)

An online algorithm to optimize (3) should mimic the performance
of its offline counterpart, and the gap between them is called the regret.
If the offline problem is to minimize

∑T
t=0 f t (x), then the regret is

called a static regret [13], which can be defined as

Rs
i (T ) =

T∑

t=0

f t (xi (t)) −
T∑

t=0

f t (x∗), i ∈ V (4)
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where x∗ = argminx∈X

∑T
t=0 f t (x). An online algorithm for (3)

performs well if its regret (4) is sublinear with respect to T , i.e.,
limT →∞ Rs (T )/T = 0 for any i ∈ V . If the offline problem is to min-
imize f t (x) at each time, the regret is called a dynamic regret [16],
which can be defined as

Rd
i (T ) =

T∑

t=0

f t (xi (t)) −
T∑

t=0

f t (x∗(t)), i ∈ V (5)

where x∗(t) = argminx∈X f t (x) for any t ∈ �T �. In this paper, we use
dynamic regret (5), whose benchmark is more stringent than that of
static ones. It is well known that using dynamic regret causes the prob-
lem insolvable in the worst case. Motivated by [17]–[20], we use the
following deviation of the minimizer sequence {x∗(t)}T

t=0 to describe
the difficulty:

ΘT =
T∑

t=0

‖x∗(t + 1) − x∗(t)‖. (6)

Throughout this paper, the following assumption is made.
Assumption 3: X is nonempty and bounded, i.e., there exists a

positive κ such that ‖x − y‖ ≤ κ for any x,y ∈ X. Moreover, X is
closed and convex.

From Assumption 3, we know that X is compact. In [15] and [16],
cost functions are assumed to be convex. Different from them, we make
the following assumption on cost functions.

Assumption 4: For any t ∈ �T �, each f t is μ-strongly pseudocon-
vex on X.

Assumption 4 implies that ∇f t is μ-strongly pseudomonotone on X
since it is twice differentiable [28]. Suppose that agent i can communi-
cate with its neighbors via the communication graph sequence {G(t)},
and has access to the information associated with f t

i (x) after the deci-
sion is made for any i ∈ V and t ≥ 0. The goal of this paper is to design
an online distributed strategy for agents to solve (3), the dynamic regret
(5) is used to measure the performance of our algorithm.

B. Auxiliary Optimization-Based Online Distributed Algorithms

In this section, an online distributed algorithm to solve (3) will be
presented based on an auxiliary optimization problem. Let us begin
with considering an offline and centralized optimization problem

min f (x), subject to x ∈ X (7)

where f : Rm → R is a strongly pseudoconvex function, and X ⊂ Rm

is a convex set. By Lemma 1, we know that solving (7) is equivalent to
finding a x in X such that

〈∇f (x),y − x〉 ≥ 0 ∀ y ∈ X. (8)

Now construct an auxiliary problem as follows:

min xT Px + 〈η∇f (x0 ) − 2Px0 ,x〉 , subject to x ∈ X (9)

where x0 ∈ X, η > 0, and P ∈ Rm ×m is symmetric and positive def-
inite. By KKT condition, x∗ ∈ X is the solution to (9) if and only
if

〈2Px∗ + η∇f (x0 ) − 2Px0 ,y − x∗〉 ≥ 0 ∀y ∈ X. (10)

Comparing (8) and (10), we know that x∗ is also the solution to (7) if
x∗ = x0 . Replacing x0 with x(t) and replacing x∗ with x(t + 1), an
auxiliary optimization-based strategy can be achieved as follows:

x(t + 1) = arg min
x∈X

{
xT Px + 〈η∇f (x(t)) − 2Px(t),x〉} . (11)

Note that (7) is solved if x(t + 1) = x(t) in (11), which implies that the
equilibrium point of (11) is the solution to (7). Let X = Rm and P =

Im , if f t
i is convex, we have arg minx∈X {xT Px + 〈η(t)∇f (x(t)) −

2Px(t),x〉} = x(t) − η (t)
2 ∇f (x(t)). Accordingly, (11) becomes the

traditional gradient descent algorithm. Thus, (11) can be viewed as an
extension of gradient descent algorithm, and one can intuitively assert
that it is convergent. The convergence of algorithm (11) is proved in
details in [30]–[32].

To solve (3), an extension of (11) to the online and distributed set-
ting, which is called an auxiliary optimization-based online distributed
algorithm by us, is proposed for each agent

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xi (t + 1) = arg min
x∈X

{
xT Px +

〈
η(t)∇f t

i (xi (t))

− 2Pyi (t),x〉}

yi (t) =
∑

j∈Ni (t)

aij (t)xj (t)

(12)

for any i ∈ V , where xi (t) is agent i s state at t ∈ �T �, xi (0) =
xi0 ∈ X, and η(t) is a positive and decaying learning rate with initial
value η(0) = η0 > 0. Algorithm (12) is designed by combining the
consensus algorithm and auxiliary optimization-based strategy (11).
The consensus term yi (t) is motivated by the consensus algorithm in
[1], [7], and [23]. Algorithm (12) runs by using the gradient information
of the local cost function in the past time and the state information
received from its neighbors. Therefore, algorithm (12) is online and
distributed.

Remark 1: When agents update their states by (12), a common sym-
metric and positive definite matrix P is involved, which may prevent
the proposed algorithm from being fully distributed. In fact, in a bal-
anced and periodically strongly connected communication graph, it is
not difficult to determine a common constant P for each agent based on
local information. For example, the local initial state of each agent is set
to be a positive definite matrix Pi , i ∈ V . We can select a strictly diago-
nally dominant matrix Pi to ensure that it is positive definite. Using the
average-consensus algorithm in [1], all agents’ states will converge to
the positive definite matrix P = 1

n

∑n
i=1 Pi . Moreover, for (12), since

P is positive definite and X is nonempty, xi (t) exists and is unique
for any i ∈ V and t ∈ �T �. Particularly, let X = Rm and P = Im ,
if f t

i is convex, we have arg minx∈X {xT Px + 〈η(t)∇f t
i (xi (t)) −

2Pyi (t),x〉} =
∑

j∈Ni (t) aij (t)xj (t) − η (t)
2 ∇f t

i (xi (t)). Then, (12)
is reduced to the “consensus+gradient” algorithm [2], [11]. That is, (12)
can be viewed as an extension of the “consensus+gradient” algorithm.
Different from them, here, we are committed to investigating the case
where the sum of cost functions is strongly pseudoconvex, rather than
convex.

IV. MAIN RESULT

In this section, we will state our main result and give its proof in
details. Let us begin with presenting the main result.

Theorem 1: Under Assumptions 1–4, if the learning rate in algo-
rithm (12) is given by η(t) = α/

√
t + 1 for some α > 0, then for any

i ∈ V and learning time T ∈ N,

Rd
i (T ) ≤ nδ

√

Q +
16�LΘT

αμ ln 2

(
(T + 1)3/4

√
ln(T + 1)

)
(13)

where Q = (4ρ1 / (αμ)+2K1)+3α 2 (4ρ2 / (αμ )+2K2 )
λ(1−λ) ln 2 + 6α n δ 2

μθ
+ 4d

αμ ln 2 , K1

= C2 + CδH n
√

m η 0
θ (1−λ) , K2 = m (n δH )2

4θ 2 (1−λ) , C = H
√

m
∑n

i=1 ‖xi (0)‖1 , ρ1

= n(5LK1+(κσ + δ)αC), ρ2 = n (5LθK2 + δH n
√

m (κσ + δ ))
θ

, d = n
Lκ2 , � = supx ∈X ‖x‖, δ = supt ∈ �T �, i ∈V,x ∈X ‖∇f t

i (x)‖, σ =
supt∈�T �, i∈V,x∈X ‖∇2f t

i (x)‖, L = λm ax (P), θ = λm in (P), H and λ

are defined in (2), ΘT is defined in (6), and m is the dimension of the
decision variable.
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In Theorem 1, the bound of the dynamic regret measures the per-
formance of the proposed online distributed algorithm. From (13), we
know that ΘT is a significant factor that influences the sublinearty of
the bound. Note that (T + 1)3/4

√
ln(T + 1) sublinearly grows with

T , i.e., limT →∞
(T +1)3 / 4

√
ln(T +1)

T
= 0. If the global cost function f t

varies extremely slowly and ΘT is upper bounded and small, then (3)
is approximately reduced to a time-invariant case. In fact, for (13), to
guarantee that the bound of the dynamic regret sublinearly grows with
learning time T , it is unnecessary for ΘT to be bounded. If ΘT sublin-

early grows with
√

T +1
ln(T +1) , then, limT →∞

√
Θ T (T +1)3 / 4

√
ln(T +1)

T
= 0.

In this case, the gap between the online algorithm and its offline coun-
terpart asymptotically converges to zero, and then the online distributed
algorithm (12) performs well. Thus, algorithm (12) benefits for solving
fractional programming problems and frictionless contact analysis in
dynamic environments. If minimizer sequence {x∗(t)}T

t=0 fluctuates
drastically, ΘT could become linear with

√
T +1

ln(T +1) , then, the bound in
Theorem 1 cannot keep the dynamic regret sublinear. This is natural
since even in the online convex optimization [17]–[20], the problem is
insolvable in worst cases.

In addition, the term in the right-hand side of (13) is also influenced
by connectivity of the network. Note that the lower bound � of weights
is not larger than 1/2 since each agent is its own neighbor, then λ ≥ 1/2
for any n ≥ 2. By definitions of λ and H in (2), it is not difficult to
verify that when λ ≥ 1/2, all values of λ, 1

1−λ
, 1

λ(1−λ) , as well as H ,
increase as the connected period B increases. Then, by the expression
of Q, we know that Q increases if B increases. Consequently, a larger
connected period enlarges the bound of the dynamic regret.

Before giving the proof of Theorem 1, we present some useful lem-
mas. First, an upper bound of the error between each agent’s state and
their average value at each iteration time under (12) is presented.

Lemma 2: Under Assumptions 1–3, for any t ∈ �T � and i ∈ V , we
have

‖xi (t) − x̄(t)‖ ≤ Cλt +
δH

√
m

θ

t∑

τ =0

λt−τ η(τ ) (14)

and ‖xi (t) − x̄(t)‖2 ≤ K1λ
t + K2

t∑

τ =0

λt−τ (η(τ ))2 (15)

where x̄(t) = 1
n

∑n
i=1 xi (t).

Proof: See Appendix A. �
Inequality (14) reflects the state error among agents in the network

during evolution of the system. It is obvious that H and λ are signifi-
cant factors that influence the error bound. If the connected period B
increases, then H and λ increase. Accordingly, the error bound also
increases. This is consistent with influence of the connected period on
the bound of regret in Theorem 1. Particularly, λ acts as same as the
second largest eigenvalue of the weighted matrix corresponding to a
fixed and connected undirected graph [20]. Next, we will present a
bound on the accumulated square error between the average of agents’
states and the minimizer.

Lemma 3: Under Assumptions 1–4, if η(t) is nonincreasing, then

T∑

t=0

‖x̄(t) − x∗(t)‖2

≤ 2ρ2

μη(T )

T∑

t=0

t+1∑

τ =0

λt−τ (η(τ ))2 +
2ρ1

μη(T )

T∑

t=0

λt

+
1

μη(T )

T∑

t=0

n(δη(t))2

θ
+

8�LΘT

μη(T )
+

2d

μη(T )
.

(16)

Proof: See Appendix B. �

Inequality (16) gives the bound of the average tracking error during
evolution of the system. From (16), we see that deviation ΘT plays an
important role in controlling the bound of the tracking error. On the
basis of Lemmas 2 and 3, we can obtain the bound of

∑T
t=0 ‖xi (t) −

x∗(t)‖, which is used in the proof of Theorem 1. See the following
proof.

Proof of Theorem 1: From Lemmas 2 and 3, for any i ∈ V , we have

T∑

t=0

‖xi (t) − x∗(t)‖2

≤ 2
T∑

t=0

‖x̄(t) − x∗(t)‖2 + 2
T∑

t=0

‖xi (t) − x̄(t)‖2

≤
(

4ρ1

μη(T )
+ 2K1

) T∑

t=0

λt +
4d

μη(T )

+
(

4ρ2

μη(T )
+ 2K2

) T∑

t=0

t+1∑

τ =0

λt−τ (η(τ ))2

+
2

μη(T )

T∑

t=0

n(δη(t))2

θ
+

16�LΘT

μη(T )
.

(17)

Note that
∑T

t=0
1

t+1 =
∑T +1

t=1
1
t
≤ 1 +

∫ T +1
1

1
t
dt = 1 + ln(T + 1)

and
∑T

t=0 λt ≤ 1
1−λ

, let the learning rate η(t) equal to α/
√

t + 1, we
have

T∑

t=0

t+1∑

τ =0

λt−τ (η(τ ))2 =
T +1∑

τ =1

T∑

t= τ −1

λt−τ (η(τ ))2 +
T∑

t=0

λt (η0 )2

≤ α2 (1 + ln(T + 1) + λ)
λ(1 − λ)

≤ 3α2 ln(T + 1)
λ(1 − λ) ln 2

(18)

where the first equation holds by changing the order of summations
and the last inequality results from the fact ln(T + 1) ≥ ln 2 for any
T ≥ 1. Using Jensen’s inequality yields

(
T∑

t=0

‖xi (t) − x∗(t)‖
)2

≤ (T + 1)
T∑

t=0

‖xi (t) − x∗(t)‖2 . (19)

By inequalities (17)–(19), we have

T∑

t=0

‖xi (t) − x∗(t)‖ ≤
√

Q +
16�LΘT

αμ ln 2

(
(T + 1)3/4

√
ln(T + 1)

)

(20)

for any i ∈ V . Note that ‖∇f t
i (x)‖ ≤ δ for any t ∈ �T � and i ∈ V if

x ∈ X, it implies f t
i is δ-Lipschitz continuous on X. We have

Rd
i (T ) =

T∑

t=0

(f t (xi (t)) − f t (x∗(t)))

≤
T∑

t=0

n∑

j=1

∥
∥f t

j (xi (t)) − f t
j (x∗(t))

∥
∥

≤ nδ
T∑

t=0

‖xi (t) − x∗(t)‖

(21)

for any i ∈ V . Submitting (20) into (21) yields (13). This leads to the
validity of the result. �
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Fig. 1. Time-varying directed graph sequence.

Remark 2: If the cost function f t in (3) is convex, the basic con-
vex inequality f t (xi (t)) − f t (x∗(t)) ≤ 〈∇f t (xi (t)),xi (t) − x∗(t)〉
holds, which plays an important role in analyzing the bound of regrets
[11]–[20]. The difficulties in the study of online distributed strongly
pseudoconvex optimization come from the difference between inequal-
ity (21) and this basic convex inequality. To achieve the upper bound
of regrets, Jensen’s inequality in (19) is used to estimate the bound of∑T

t=0 ‖xi (t) − x∗(t)‖ based on the bound of
∑T

t=0 ‖xi (t) − x∗(t)‖2 ,
which amplifies the bound by

√
T + 1 times. This difficulty is yet to

be overcome, and we will try to solve it in future works.

V. SIMULATIONS

In this section, we give a numerical example to illustrate the
obtained result. Consider a multiagent system with six agents, la-
beled by index set {1, . . . , 6}, where each agent’s state is defined as
xi = [xi1 , xi2 ]T ∈ R2 . The agents communicate with each other via
a time-varying directed graph sequence given in Fig. 1, where G(k ) ,
k = 1, . . . , 4 are four possible graphs. The switching order is given by
G(1) → G(2) → G(3) → G(4) → G(1) → · · · . The weight of each edge
is assumed to be aij = 1

|Ni (t) | , where |Ni (t)| is the number of agent
i s neighbors and any agent is assumed to be its own neighbor. It is
obvious that the union of the graphs is strongly connected with B = 4.

For any i ∈ {1, . . . , 6}, the dynamic cost function is given
by f t

i (x) = i
63 x3

1 + i−1
15 (x2

1 + x2
2 ) + 2 i+1

6 x1 − 2(i−3)
3 q(t)x2 , x =

[x1 , x2 ]T , and t = 0, 1, . . . , T , here we set T = 50. Additionally, the
constraint set is given as a box set X = {−2 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 3}.
The sum is computed as f t (x) = 1

3 x3
1 +x2

1 + x2
2 + 8x1 − 2q(t)x2 .

For any t ≥ 0, it is obvious that f t is not convex on X. However, it is
not difficult to verify that f t is strongly pseudoconvex on X. We assume
q(t) = arctan(t/20). In the offline setting, we use all the information
to compute the minimum value x∗(t) = [−2, arctan(t/20)]T . Now
suppose that agent i can only have access to its local cost function
f t

i . Initial states are given as: x1 = x5 = [−0.5, 1]T ; x2 = [−1, 0]T ;
x3 = [1, 2]T ; x4 = [−2, 3]T ; and x6 = [1, 2]T . Algorithm (12) is ap-
plied to the problem with η(t) = 6/

√
t + 1 and P = diag{6, 30}.

Fig. 2 shows the trajectories of agents’ states, from which we can
see that the state of each agent approximates to [−2, 1.2]T at t = 50.
The average regrets are shown in Fig. 3, from which we can see that
each average regret approaches to zero after a period of time. These
observations are consistent with the results established in Theorem 1.
Additionally, an advanced online distributed algorithm in [20] is em-
ployed to address the same strongly pseudoconvex optimization. The
regret bound for convex optimization is given in [20, Corollary 4].
Under same initial conditions, the trajectories of agents’ states and the
average regrets are shown in Fig. 4 and Fig. 5, respectively. It can

Fig. 2. Trajectories of xi (t), i = 1, . . . , 6 under algorithm (12).

Fig. 3. Trajectories of average regrets Ri (t)/t, i = 1, . . . , 6 under al-
gorithm (12).

Fig. 4. Trajectories of xi (t), i = 1, . . . , 6 under the strategy in [20].

Fig. 5. Trajectories of average regrets Ri (t)/t, i = 1, . . . , 6 under the
strategy in [20].

be seen that the problem cannot be solved by their method. Thus, the
effectiveness of our strategy is further verified.

VI. CONCLUSION

In this paper, the problem of online distributed optimization with
strongly pseudoconvex-sum cost functions has been investigated. To
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address this problem, we have presented an auxiliary optimization-
based online distributed algorithm. By implementing the algorithm,
every agent adjusts its state value by solving an auxiliary optimization
problem involving its own cost function information and the local states
information received from its immediate neighbors. The result shows
that if the time-varying graph sequence is B-strongly connected, then
each dynamic regret function is bounded by the product of a term
depending on the deviation of the minimizer sequence and a sublinear
function of the learning time.

How to achieve a lower bound of the regret functions is a diffi-
cult problem in online distributed strongly pseudoconvex optimiza-
tion. How to solve more general nonconvex optimization in online
and distributed manner is another interesting and challenging problem.
These two topics will be considered in our future work. Some other
issues may also be considered, such as the case with network-induced
time-delays, packet loss and communication bandwidth constraints,
which will bring new challenges in online distributed optimization
with strongly pseudoconvex-sum cost functions.

APPENDIX

A. Proof of Lemma 2

Note that xi (t + 1) generated by algorithm (12) is the solution to
the following optimization:

min
x∈X

xT Px +
〈
η(t)∇f t

i (xi (t)) − 2Pyi (t),x
〉
.

By KKT condition, we have

〈xi (t + 1) − yi (t),xi (t + 1) − x〉P

≤ η(t)
2
〈∇f t

i (xi (t),xi (t + 1) − x
〉

for any x ∈ X. Note that for any xi (t) ∈ X and i ∈ V , by the convexity
of X, we know yi (t) ∈ X. Let x = yi (t), due to the facts 2θ‖xi (t +
1) − yi (t)‖2 ≤ ‖xi (t + 1) − yi (t)‖2

P and ‖∇f t
i (xi (t))‖ ≤ δ, it fol-

lows that

2θ‖xi (t + 1) − yi (t)‖2 ≤ δη(t)
2

‖xi (t + 1) − yi (t)‖. (22)

Now we denote ei (t) = xi (t + 1) − yi (t), i ∈ V , from (22), it yields
that ‖ei (t)‖ ≤ δη(t)/(2θ). Moreover,

xi (t + 1) =
∑

j∈Ni (t)

aij (t)xj (t) + ei (t).

We define vector x̃r (t) ∈ Rn , which stacks up the rth entry of xi (t),
i ∈ V . Similarly, we also define vector ẽr (t) ∈ Rn , which stacks up
the rth entry of ei (t), i ∈ V . Then, it follows that

x̃r (t + 1) = A(t)x̃r (t) + ẽr (t)

which implies that

x̃r (t) = Φ(t, 0)x̃r (0) +
t∑

τ =0

Φ(t, τ )ẽr (τ ) (23)

where Φ(t, s) is defined as (1). Note that Φ(t, s) is a doubly stochastic
matrix for any t ≥ s ≥ 0, then, (23) further implies that

1T x̃r (t) = 1T x̃r (0) −
t∑

τ =0

1T ẽr (τ ). (24)

From (23) and (24), we have
∣
∣
∣
∣[x̃r (t)]i − 1

n
1T x̃r (t)

∣
∣
∣
∣

≤
∣
∣
∣
∣

(

[Φ(t, 0)]i · − 1
n
1T

)

x̃r (0)
∣
∣
∣
∣+

t∑

τ =0

∣
∣
∣
∣

(

[Φ(t, τ )]i · − 1
n
1T

)

ẽr (τ )
∣
∣
∣
∣

≤ max
1≤j≤n

∣
∣
∣
∣[Φ(t, 0)]ij − 1

n

∣
∣
∣
∣ ‖x̃r (0)‖1

+
nδ

2θ

t∑

τ =0

η(τ ) max
1≤j≤n

∣
∣
∣
∣[Φ(t, τ )]ij − 1

n

∣
∣
∣
∣

for every i ∈ V . Using (2), we have
∣
∣
∣
∣[x̃r (t)]i − 1

n
1T x̃r (t)

∣
∣
∣
∣ ≤ Hλt ‖x̃r (0)‖1 +

nδH

2θ

t∑

τ =0

λt−τ η(τ ).

This directly implies (14). Furthermore, due to the facts that η(t) is
nonincreasing and 0 < λ < 1, from (14), we have

‖xi (t) − x̄(t)‖2 ≤
(

C2 +
CδHn

√
mη0

θ(1 − λ)

)

λt

+
m(nδH)2

4θ2

(
t∑

τ =0

λt−τ η(τ )

)2

.

(25)

Using Cauchy–Schwarz inequality yields
(

t∑

τ =0

λt−τ η(τ )

)2

≤
(

t∑

τ =0

λt−τ

)(
t∑

τ =0

λt−τ (η(τ ))2

)

≤ 1
1 − λ

t∑

τ =0

λt−τ (η(τ ))2 .

(26)

Inequalities (26) and (25) lead to validity of (15). �

B Proof of Lemma 3

To prove Lemma 3, we give the following lemma.
Lemma 4: Under Assumptions 1–3, for any z ∈ Rm and t ∈ �T �,

n∑

i=1

〈xi (t) − yi (t), z − xi (t + 1)〉P

≤ 5nL

2

n∑

i=1

K1λ
t +

5nL

2
K2

t+1∑

τ =0

λt−τ (η(τ ))2 .

(27)

Proof: Note that

n∑

i=1

〈xi (t) − yi (t), z − xi (t + 1)〉P

=
n∑

i=1

〈xi (t) − yi (t), z − x̄(t + 1)〉P

+
n∑

i=1

〈xi (t) − yi (t), x̄(t + 1) − xi (t + 1)〉P

≤
〈

n∑

i=1

(xi (t) − yi (t)), z − x̄(t + 1)

〉

P

+ L
n∑

i=1

‖xi (t) − yi (t)‖ ‖x̄(t + 1) − xi (t + 1)‖ .
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It is not difficult to verify that
∑n

i=1 Pyi (t) =
∑n

i=1 Pxi (t). Then,
〈∑n

i=1 (xi (t) − yi (t)), z − x̄(t + 1)〉P = 0. Using Young’s inequal-
ity and the fact that

∑n
j=1 aij (xi (t) − xj (t)) is a convex combination

of the xi (t) − xj (t), we have

n∑

i=1

〈xi (t) − yi (t), z − xi (t + 1)〉P

≤ 2L

n∑

i=1

‖xi (t) − x̄(t)‖2

+
L

2

n∑

i=1

‖x̄(t + 1) − xi (t + 1)‖2 .

(28)

Using (15) in Lemma 2 and the fact 0 < λ < 1 to (28), it leads to the
validity of (27). �

Proof of Lemma 3: Consider an auxiliary function as D(t) =
1
2

∑n
i=1 ‖x∗(t) − xi (t)‖2

P . Then, let us study the variation of D for
one stage of (12)

�D(t) = D(t + 1) − D(t)

= −1
2

n∑

i=1

‖xi (t) − xi (t + 1)‖2
P

+
n∑

i=1

〈
xi (t) − xi (t + 1),x∗(t) − xi (t + 1)

〉
P

+
n∑

i=1

〈 1
2
(x∗(t + 1) + x∗(t))

− xi (t + 1),x∗(t) − xi (t + 1)
〉

P

≤
n∑

i=1

〈
xi (t) − xi (t + 1),x∗(t) − xi (t + 1)

〉
P

−
n∑

i=1

θ

2
‖xi (t) − xi (t + 1)‖2

+ 2�L‖x∗(t + 1) − x∗(t)‖.

(29)

Moreover, by KKT condition, we have

〈yi (t) − xi (t + 1),x∗(t) − xi (t + 1)〉P

≤ η(t)
2
〈∇f t

i (xi (t)),x∗(t) − xi (t + 1)
〉

for any i ∈ V . Together with (27) in Lemma 4, it follows that

n∑

i=1

〈
xi (t) − xi (t + 1),x∗(t) − xi (t + 1)

〉
P

=
n∑

i=1

〈
yi (t) − xi (t + 1),x∗(t) − xi (t + 1)

〉
P

+
n∑

i=1

〈
xi (t) − yi (t),x∗(t) − xi (t + 1)

〉
P

≤
n∑

i=1

η(t)
2
〈∇f t

i (xi (t)),x∗(t) − xi (t + 1)
〉

+
5nL

2
K1λ

t +
5nL

2
K2

t+1∑

τ =0

λt−τ (η(τ ))2 .

(30)

From Lemma 1, one knows 〈∑n
i=1 ∇f t

i (x∗(t)), x̄(t) − x∗(t)〉 ≥ 0.
By Assumption 4, we know that

∑n
i=1 ∇f t

i is strongly pseudomono-
tone, then we have

〈
n∑

i=1

∇f t
i (x̄(t)), x̄(t) − x∗(t)

〉

≥ μ

2
‖x̄(t) − x∗(t)‖2 .

Note that ‖∇2f t
i (x)‖ ≤ σ for any x ∈ X, it implies ‖∇f t

i (xi (t)) −
∇f t

i (x̄(t))‖ ≤ σ‖xi (t) − x̄(t)‖ for any i ∈ V . Together with bound-
edness of X in Assumption 3, we have

n∑

i=1

〈∇f t
i (xi (t)),x∗(t) − xi (t)

〉

=
n∑

i=1

〈∇f t
i (xi (t)) −∇f t

i (x̄(t)),x∗(t) − xi (t)
〉

+
n∑

i=1

〈∇f t
i (x̄(t)), x̄(t)−xi (t)

〉−
n∑

i=1

〈∇f t
i (x̄(t)), x̄(t)−x∗(t)

〉

≤
n∑

i=1

(κσ + δ)‖xi (t) − x̄(t)‖ − μ

2
‖x̄(t) − x∗(t)‖2 .

Then,

η(t)
n∑

i=1

〈∇f t
i (xi (t)),x∗(t) − xi (t + 1)

〉

=
n∑

i=1

η(t)
〈∇f t

i (xi (t)),x∗(t) − xi (t)
〉

+
n∑

i=1

η(t)
〈∇f t

i (xi (t)),xi (t) − xi (t + 1)
〉

≤ −μη(t)
2

‖x̄(t) − x∗(t)‖2 +
n∑

i=1

(κσ + δ)η(t)‖xi (t) − x̄(t)‖

+
n∑

i=1

δη(t) ‖xi (t) − xi (t + 1)‖

≤ −μη(t)
2

‖x̄(t) − x∗(t)‖2 +
n∑

i=1

(κσ + δ)η(t)‖xi (t) − x̄(t)‖

+
n∑

i=1

θ

2
‖xi (t) − xi (t + 1)‖2 +

n(δη(t))2

2θ
(31)

where the last inequality results from using Young’s inequality. By
(29)–(31) and using (14) in Lemma 2, we have

�D(t) ≤ −μη(t)
4

‖x̄(t) − x∗(t)‖2 +
n(δη(t))2

4θ

+
ρ1

2
λt +

ρ2

2

t+1∑

τ =0

λt−τ (η(τ ))2

+ 2�L‖x∗(t + 1) − x∗(t)‖.

(32)

Due to the fact D(t) ≥ 0 for any t ∈ �T �, there is -
∑T

t=0 �D(t) =
D(0) − D(T ) ≤ D(0) ≤ d/2. Summing from t = 0 to T at both sides
of (32) yields (16). �

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 10,2022 at 01:26:52 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 1, JANUARY 2020 433

REFERENCES

[1] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, “Con-
vergence in multiagent coordination, consensus, and flocking,” in Proc.
IEEE Conf. Decis. Control, 2005, pp. 2996–3000.
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