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Sensor Network Localization via Alternating
Rank Minimization Algorithms
Changhuang Wan, Gangshan Jing , Sixiong You, and Ran Dai

Abstract—Sensor network localization (SNL) is to deter-
mine physical coordinates of all sensors in a network given
global coordinates of anchors and available measurements
among sensors and anchors. Two challenges related to
SNL are to find conditions leading to a uniquely localiz-
able network and develop effective and efficient methods to
solve SNL problems. This work first proves that infinitesi-
mal rigidity, together with some mild conditions, is sufficient
for unique localizability of a network considering additional
relationships between nonadjacent sensors. On the other
hand, solving an SNL problem is generally NP-hard due to
its nonconvex constraints. Instead of ignoring the rank con-
straint used in existing relaxation methods, we convert the
rank constraint in the SNL problem into its equivalent con-
straints and solve it alternatively by proposing the alternat-
ing rank minimization algorithm (ARMA). We start with the
centralized ARMA to solve the exact SNL problem. Next, to
improve the scalability for solving large-scale SNL prob-
lems, ARMA is extended in a distributed manner by de-
composing the original problem into a group of subprob-
lems, which can be solved independently. Finally, simula-
tion cases are provided for both centralized and distributed
ARMA to validate the improved localization accuracy, effi-
ciency, and robustness by being compared to the state-of-
the-art localization methods.

Index Terms—Distributed optimization, graph rigidity,
rank-constrained optimization, sensor network localization
(SNL).

I. INTRODUCTION

W IRELESS-SENSOR networks, due to their capabilities
of sensing, processing, and communication, have a wide

range of applications [1], such as target tracking and detection
[2], [3]; process control; environment monitoring [4]–[6]; area
exploration [7], [8]; data collection; and cooperative robots [9],
[10], just to name a few. Among all of these applications, it
is essential to determine the location of every sensor with de-
sired accuracy in order to fully realize the functionalities of
sensor networks. Although global positioning systems or man-
ual configuration can localize these sensor nodes, they usually
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require high cost and/or are infeasible to deploy in some scenar-
ios. Therefore, estimating locations of the sensor nodes based
on measurements of neighboring nodes has attracted much re-
search interest in recent years [11]–[13]. The measurements
could be relative distances or angles, which are usually mea-
sured using signal transmitters based on criteria, such as time of
arrival, time-difference of arrival, or strength of received radio-
frequency signals [14]. Due to limited transmission power, the
measurements can only be obtained within a specified range,
called radio range. Furthermore, it is assumed that the global
position of some nodes is known, referred to as anchors. Then, a
sensor network localization (SNL) problem is defined as given
the positions of anchors and the measurable information among
different sensors, and how to find positions of the remaining of
sensor nodes.

Mathematically, the original formulation of a range-based
SNL is a nonlinear equality constrained feasibility problem. If
the positions of all sensor nodes can be uniquely localized, there
exists only one feasible solution to this feasibility problem. By
employing the least-square method, it can be converted into a
nonconvex optimization problem, which is NP-hard [15]. How-
ever, this problem could be ill-posed as there may exist more
than one set of noncongruent localization of the sensors satisfy-
ing given distance measurements. Thus, two questions naturally
arise: first, what conditions lead to a uniquely localizable net-
work and second, how to effectively and efficiently localize all
undetermined sensor nodes in a network?

The localizability of a sensor network is usually revealed
using graph rigidity theory [16]–[18]. So and Ye [19] showed
the problem of deciding whether a given network localization
instance is uniquely localizable. They further discovered that
the problem of determining the node positions of a uniquely
localizable instance can be solved efficiently using semidefi-
nite programming (SDP). The works in [20] and [21] proved
that a sensor network is uniquely localizable if and only if the
grounded graph is generically globally rigid. However, it is dif-
ficult to satisfy the generic global rigidity condition, especially
for large-scale networks.

Due to the nonconvex nature of the SNL feasibility problem,
many approaches have been proposed. Existing SNL approaches
can be classified into centralized [22], [23] and distributed al-
gorithms [11], [24]–[26], based on the structure of the compu-
tational framework. In the centralized framework, all distance-
based measurements are collected in a data fusion center for
processing, and all unknown variables are determined together.
Relaxation methods, such as SDP [27], [28] and second-order
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cone programming (SOCP) [29], have been applied to SNL by
converting/relaxing the original problem into a computationally
tractable convex optimization problem. However, since relax-
ation methods ignore the rank constraints, they usually require
the grounded graph to be universally rigid (shown as the unique
localizability condition in [30]), which is more strict than global
rigidity. It is obvious that the centralized framework not only
requires a heavy computational load but also consumes a great
amount of communication power.

In contrast, distributed algorithms localize all sensor nodes
with local information exchanged among neighboring nodes,
which is scalable and energy efficient. Hence, distributed al-
gorithms for SNL have attracted more attention, especially for
large-scale sensor networks. For example, cluster-based SDP
[28], node-based SDP [31], and edge-based SDP [32] are three
different distributed formulations based on the SDP method. Sri-
rangarajan et al. [11] and Shi et al. [33] proposed an edge-based
SOCP method. However, each subproblem in these distributed
frameworks relies on existing SNL algorithms based on relax-
ation approaches, which also requires the grounded graph to be
universally rigid. In addition, Barycentric coordinate-based dis-
tributed algorithms [34], [35] and distributed multidimensional
scaling algorithms [36] have been developed to solve the SNL
problem with additional assumptions. For example, [34] as-
sumed that any three of each node’s neighbors are not collinear.
Reference [35] required that the sensors should be located in
the convex hull of their neighbors. With good initialization, a
gradient-based distributed method [37] claimed to be efficient
for solving SNL.

This paper presents some novel results on both the condition
for unique localizability and the position-seeking algorithms.
On one hand, by considering relationships between nonadja-
cent sensors, a milder graph condition for unique localizability
is derived. We show that a network can be uniquely localized
even if the sensing graph is not globally rigid. More precisely,
infinitesimal rigidity, together with some mild conditions, is
sufficient for unique localizability. To the best of our knowl-
edge, this condition is milder than any works in the range-based
SNL literature. On the other hand, an iterative algorithm, called
the alternating rank minimization algorithm (ARMA), is pro-
posed to solve rank-constrained SDP programs, which can be
applied to solve SNL problems. Compared to the literature of
SNL based on SDP methods [22], [23], we handle the rank con-
straint by equivalently converting it into complementary con-
straints, which can be solved iteratively with local convergence.
As a result, our algorithm seeks an exact solution rather than an
approximated one.

Moreover, a distributed algorithm based on ARMA is pro-
posed. The original SNL problem is decomposed into a group
of node-based subproblems, where each subproblem has only
one node to be localized and all other sensors are fixed using the
results obtained from the previous iteration. As every formu-
lated subproblem is a semidefinite problem, it can be solved via
ARMA at each iteration. However, since only local information
is available for every node when implementing the distributed
algorithm, the nonadjacency inequality constraints will not be
considered. Furthermore, due to the distributed feature of the

algorithm, the dimension of each subproblem is a linear func-
tion with respect to the number of its immediate neighbors. Thus,
the computational cost per node will not increase in large-scale
networks. In addition, simulations in this paper show that the
existence of unlocalizable sensors will not affect the estimation
accuracy of other localizable sensors.

Throughout this paper, R denotes the set of real numbers; S
denotes the set of symmetric matrices; N is the set of positive
integers; col(A), null(A), rank(A) denote the column space,
null space, and rank of matrix A, respectively; dim(M) is the
dimension of a space M ; |C| is the cardinality of set C; tr(X)
is the trace of matrix X; and 〈A,B〉 denotes the inner product
of matrices A and B, that is, tr(AT B). ∇f(x) and ∇2f(x)
are the gradient and Hessian matrix of f(·) with respect to x,
respectively.

This paper is organized as follows. Section II describes the
general formulation of SNL, the graph rigidity conditions for
unique localization, and the semidefinite programming relax-
ation (SDPR) method for SNL. In Section III, the ARMA is
proposed and applied to solving SNL in a centralized frame-
work with proof of convergence. Section IV presents the dis-
tributed algorithm with computational analysis. In Section V,
the numerical simulation results from the proposed methods and
comparison with SDP relaxation are presented. The conclusions
are addressed in Section VI.

II. WIRELESS-SENSOR NETWORKS LOCALIZATION

A. Problem Statement

In this paper, we focus on solving the range-based SNL prob-
lem. Consider a static sensor network in Rs (s = 2 or 3) has m
sensors whose positions are unknown and n anchors whose posi-
tions are known (s < n, m > 0). The network of sensors can be
indexed by V = Va ∪ Vs , where Va = {1, 2, . . . , n} and Vs =
{n + 1, n + 2, . . . , n + m}. In the network, each sensor has the
capability of sensing range measurements from other sensors
within a fixed range R0 . Let xi ∈ Rs , i ∈ Vs be the position of
the ith sensor, and di,j be the Euclidean distance between a pair
of sensors xi andxj . Then, the sensing edges can be summarized
in a set E = {(i, j) ∈ V2 : ‖xi − xj‖ ≤ R0}. Accordingly, a
disk graph G = (V, E)1 can be used to interpret the sensing
relationships between sensors. Let x = (xT

1 ,xT
2 , . . . ,xT

n+m )T ,
Ess be the set of edges between nonanchor nodes, and Eas be the
set of edges between anchor nodes and nonanchor nodes.

A range-based SNL problem is to determine the position of
sensors xi , i ∈ Vs , when all anchors’ position xj , j ∈ Va , and
available measurements dj,i , (i, j) ∈ E are given. Mathemati-
cally, the SNL problem can be formulated as

find x1 , . . . ,xm ∈ Rs

such that ∀(i, j) ∈ Ess, ∀(k, i) ∈ Eas. (1)

The above SNL considers noise-free measurements and all
anchors’ positions are accurate. With the assumption of an ideal
scenario, we focus on finding new conditions for unique local-
izability and developing optimization algorithms to search the

1A disk graph is a graph whose edge set is induced by internode distances.
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Fig. 1. Illustrative examples of graph rigidity. (a) Globally rigid graph.
(b) Universally rigid graph.

exact solution of problem (1), which can be extended to cases
with noisy measurements.

B. Graph Rigidity and Localizability of SNL

Graph rigidity is a useful tool to determine whether the
coordinates of nodes in a graph can be uniquely determined
(here, two sets of coordinates are considered to be identical
if they can be transformed to each other via rigid transforma-
tions, that is, translations and rotations) when partial internode
distances are known [38], [39]. We use a pair (G,x), where
G = (V, E) and x = (xT

1 , . . . ,xT
|V|)

T ∈ R|V|s , to describe a
framework embedded in Rs . A framework (G,x) is globally
rigid in Rs if x ∈ R|V|s can be uniquely determined when dis-
tances ||xi − xj ||, (i, j) ∈ E are given. A framework (G,x) is
universally rigid if it is globally rigid for any s ∈ N. For ex-
ample, the framework in Fig. 1(a) is globally rigid, while the
one in Fig. 1(b) is universally rigid because the shape will not
change even when the graph is embedded into three or higher
dimensional space.

Another important concept in graph rigidity theory is in-
finitesimal rigidity, which is also the condition we will focus
on for unique localizability. To explain this concept, we first
introduce the term of infinitesimal motion. An infinitesimal mo-
tion of a framework (G,x) is a velocity vector v = dx

dt such that
d‖x i−xj ‖

dt = 0 for all (i, j) ∈ E . Then, the definition of infinites-
imal rigidity is stated below.

Definition 1. (Infinitesimal Rigidity): A framework is in-
finitesimally rigid if all of the infinitesimal motions are trivial,
that is, either rotations or translations.

The SNL problem defined in (1) is uniquely localizable if
there is a unique set of sensor locations satisfying the given
measurements. In the literature, the localizability of the SNL
problem is usually connected with graph rigidity theory. To fa-
cilitate the analysis of unique localizability using graph rigidity,
the concept of the grounded graph is introduced where an edge
exists between any two anchors as their positions are already
determined. The overall edge set of the grounded graph is then
denoted by Ē = E ∪ {(i, j) ∈ V2

a }. Therefore, it is more rea-
sonable to consider the realization of framework (H,x) with
H = (V, Ē) as an equivalent problem to the original SNL.

In the existing literature of SNL, for example, [19], by a relax-
ation approach, the universal rigidity of (H,x) is considered as
the necessity and sufficiency condition for unique localizability.

Fig. 2. Graph that can be uniquely localized, but is not globally rigid.

In [20] and [21], without ignoring the rank constraint, a milder
condition, that is, global rigidity of (H,x), has been recognized
as the necessity and sufficiency condition for unique localiz-
ability. In these works, an important property of disk graphs has
always been ignored. That is, the distance between each pair of
nonadjacent nodes should be greater than R0 . More precisely,
in existing centralized methods, the constraints on nonadjacent
nodes, ||xi − xj || ≥ R0 , (i, j) ∈ V2 \ Ē , have not been consid-
ered.

In fact, these constraints are quite useful in sensor localiza-
tion. When considering additional constraints on nonadjacent
nodes, the framework (H,x) is not necessary to be globally rigid
for unique localization. For example, in Fig. 2, nodes 1, 2, and
3 are anchors, and 4 and 5 are sensors whose positions are to be
determined. It is obvious that the grounded graph is not globally
rigid since node 5 can be placed on the other side of edge (1, 3)
while keeping all internode distances invariant. However, when
node 5 is in the incorrect position, it would become the neigh-
bor of node 4, which violates the constraint ||x4 − x5 || ≥ R0 .
That is, the sensor network in Fig. 2 can be uniquely localized
under constraints from measured distances and nonadjacency
constraints. Since these inequalities from nonadjacency rela-
tionships are shared globally among all network nodes, they
will be considered in the proposed centralized algorithm.

C. SDP Formulation of SNL

Solving the feasibility problem in (1) directly is difficult due to
the nonconvex equalities from measured distance. One approach
is to introduce unknown matrices X = [x1 ,x2 , . . . ,xm ] ∈
Rs×m and Y = XT X to rewrite the original SNL problem
in (1) as a feasibility problem of finding unknown matrices,
expressed as follows:

find X ∈ Rs×m , Y ∈ Rm×m

such that (ei − ej )T Y(ei − ej ) = d2
i,j ,∀(i, j) ∈ Ess[

xk

−ei

]T [
Is X
XT Y

][
xk

−ei

]
= d2

k,i ,∀(k, i) ∈ Eas

Y = XT X, (2)

where ei ∈ Rm is a unit vector with zero entries except the ith
entry and Is ∈ Rs×s is an identity matrix. By introducing

Z =
[

Is X
XT Y

]
∈ R(s+m )×(s+m ) (3)
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the feasibility problem in (2) can be equivalently reformulated
as an optimization problem with a rank constraint on Z

min
Z

0

s.t. Z(1:s,1:s) = Is

[0s×1 ; ei − ej ]T Z[0s×1 ; ei − ej ] = d2
i,j ,∀(i, j) ∈ Ess

[xk ;−ei ]T Z[xk ;−ei ] = d2
k,i ,∀(k, i) ∈ Eas

Z � 0, rank(Z) = s (4)

where Z(1:s,1:s) represents the upper-left s-dimensional prin-
ciple submatrix of Z, and Z � 0 refers to a positive semidefi-
nite matrix. Since Z(1:s,1:s) = Is , it implies that rank(Z) ≥ s.
Thus, the rank equality constraint rank(Z) = s is equivalent to
rank(Z) ≤ s.

In the semidefinite relaxation approach, the rank constraint
rank(Z) = s in (4) is ignored. Then, problem (4) can be relaxed
as the following convex SDP problem:

min
Z

0

s.t Z(1:s,1:s) = Is

[0s×1 ; ei − ej ]T Z[0s×1 ; ei − ej ] = d2
i,j ,∀(i, j) ∈ Ess

[xk ;−ei ]T Z[xk ;−ei ] = d2
k,i ,∀(k, i) ∈ Eas

Z � 0. (5)

This relaxed problem can be solved via an SDP solver, such as
Sedumi [40]. Besides, So and Ye [19] showed that the relaxed
SDP leads to a unique solution if and only if the grounded graph
is universally rigid.

III. ITERATIVE FRAMEWORK FOR CENTRALIZED SNL

A. Alternating Rank Minimization Algorithm

Consider the following general rank-constrained SDP prob-
lem:

min
X
〈Q0 ,X〉

s.t. 〈Qi ,X〉 = ci, i = 1, 2, . . . , N

〈Qi ,X〉 ≤ ci, i = N + 1, N + 2, . . . , N̂

rank(X) ≤ r, X ∈ Sn
+ (6)

where X ∈ Sn
+ is a general unknown positive semidefinite ma-

trix and Qi ∈ Rn×n , i = 0, 1, . . . , N̂ are real symmetric co-
efficient matrices, which are not necessarily positive definite,
ci ∈ R is a constant item in the linear matrix constraint, and r is
a given positive integer. As we explained that the rank equality
constraint in (4) is equivalent to a rank inequality constraint, the
SNL problem in (4) in terms of Z can be generalized in the form
of (6).

Instead of ignoring the rank constraint in (6), we replace the
rank constraint rank(X) ≤ r by an alternative set of constraints,

expressed as follows:

〈W, In 〉 = n− r, W ∈ Sn
+

X ⊥W, X ∈ Sn
+

In −W ∈ Sn
+ (7)

where In ∈ Rn×n is an identity matrix. X ⊥W indicates that
W is the orthogonal complement of X, that is, 〈X,W〉 = 0.
The idea of reformulating constraints into complementary con-
ditions, as shown in (7), is commonly used in the literature of
optimization, for example, [41]. We give the following theo-
rem to show the equivalence between the rank constraint and
constraints stated in (7).

Theorem 3.1: The rank constraint rank(X) ≤ r for X ∈
Sn

+ is equivalent to the set of constraints stated in (7).
Proof: Letting U = I −W, it is easy to see that the con-

straints in (7) are equivalent to

〈X,U〉 = trace(X)

〈I,U〉 = r

0 � U � I.

The equivalence between the rank constraint and the abovemen-
tioned equations has been given in [41, Theor. 1.1]. �

Considering the equivalent relationship between the rank con-
straint and the set of constraints in (7), problem (6) can be
equivalently reformulated as follows:

min
X ,W

〈Q0 ,X〉

s.t. 〈Qi ,X〉 = ci, i = 1, 2, . . . , N

〈Qi ,X〉 ≤ ci, i = N + 1, N + 2, . . . , N̂

〈W, I〉 = n− r, W ∈ Sn
+

〈X,W〉 = 0, X ∈ Sn
+

I−W ∈ Sn
+ . (8)

Although the rank constraint is now replaced by its equivalence,
(8) is still a nonconvex problem due to the bilinear constraint
〈X,W〉 = 0. Thus, we propose an alternating method to solve
X and W separately by decomposing it into two convex sub-
problems. Moreover, the matrix equality constraint 〈X,W〉 = 0
will be relaxed as penalty terms in the objective function. Specif-
ically, assuming at the kth step, W = Wk−1 is given, problem
(8) becomes a convex problem with respect to X, formulated as

min
X
〈Q0 ,X〉+ αk 〈X,Wk−1〉

s.t. 〈Qi ,X〉 = ci, i = 1, 2, . . . , N

〈Qi ,X〉 ≤ ci, i = N + 1, N + 2, . . . , N̂

X � 0. (9)

where αk is a positive weighting factor. Let Xk be the optimal
solution of (9), i.e.,

Xk = arg min
X∈Ck

X

〈Q0 ,X〉+ αk 〈X,Wk−1〉 (10)

where Ck
X is the set of constraints in (9).
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Algorithm 1: Alternating Rank Minimization Algorithm.

Input: Qi , ci , i = 0, 1, . . . , N̂ , ε, kmax
Output: Local optimum X.
1: begin
2: Initialize W0 with X0 from SDP relaxation of (6).
3: for k ← 1 to kmax do
4: update Xk by solving (9);
5: update Wk by solving (11);
6: if 〈Xk+1 ,Wk+1〉 ≤ ε then
7: Stop and output X;
8: else
9: Update k ← k + 1

10: end if
11: end for
12: end

With a given X = Xk , problem (8) becomes a convex prob-
lem with respect to W. Again, considering the equality con-
straint 〈X,W〉 = 0 as penalty terms, we have

min
W
〈Q0 ,Xk 〉+ αk 〈Xk ,W〉

s.t. 〈W, I〉 = n− r

I−W � 0, W � 0. (11)

Similarly, Wk is denoted by

Wk = arg min
W∈Ck

W

〈Q0 ,Xk 〉+ αk 〈Xk ,W〉 (12)

where Ck
W is the set of constraints in (11).

By giving an initial value X0 , (9) and (11) can be solved
iteratively until it satisfies the stopping criterion. The ARMA is
summarized in Algorithm 1.

B. Convergence Analysis of ARMA

This section presents the convergence analysis of the pro-
posed ARMA. Denote ωk = 〈Xk ,Wk 〉 and Jk = 〈Q0 ,Xk 〉+
αkωk . In addition, the compact forms of (10) and (12) can be
represented by two mappings Γ1(W) : S+

n �→ S+
n and Γ2(X) :

S+
n �→ S+

n , respectively. Thus, we have

Xk = Γ1(Wk−1), Wk = Γ2(Xk ). (13)

Assumption 3.2: Problem (6) is feasible.
Assumption 3.3: Q̂ :=

∑N
1 QiQT

i is positive definite, that
is, rank(Q̂) = n.

We first define

L(X,W) = 〈Q0 ,X〉+ α〈X,W〉+ β(n− r − 〈I,W)〉2

+ β

N∑
i=1

(〈Qi ,X〉 − ci)2

where α > 0 is a weighting factor, β > α
2
√

λm in
, and λmin > 0 is

the smallest eigenvalue of Q̂. In addition, n− r − 〈I,W〉 = 0
for any W = Wk obtained from (12), and 〈Qi ,X〉 − ci = 0

for any X = Xk obtained from (10). Next, we denote

A =
∂2L
∂X2 = 2β

N∑
i=1

QiQT
i = 2βQ̂

B =
∂2L

∂WX
= αI

C =
∂2L
∂W2 = 2βI.

Lemma 3.4: With Assumption 3.3 holding, Γ1(W) and
Γ2(X) are continuously differentiable in some neighborhood of
(X∗,W∗).

Proof: Let (X∗,W∗) be a pair of local optimal solutions
of (8), since L(X,W) is twice differentiable, and Γ1(W) and
Γ2(X) are continuously differentiable in some neighborhood of
(X∗,W∗). �

Remark 1: When Assumption 3.3 holds, both A and C
are positive definite. In addition, for the local optimal solution
(X∗,W∗), 〈X∗,W∗〉 = 0 holds, then X∗ ∈ Γ1(W∗),W∗ ∈
Γ2(X∗), that is, X∗ will be the optimum of the subproblem
(10).

Define two maps Υ1 : S+
n �→ S+

n and Υ2 : S+
n �→ S+

n as

Xk = Υ1(Xk−1) = Γ1(Wk−1) = Γ1(Γ2(Xk−1))

Wk = Υ2(Wk−1) = Γ2(Xk ) = Γ2(Γ1(Wk−1)).

Lemma 3.5: With Assumption 3.3 holding and L(X,W)
being twice differentiable, ρ(Υ′1(X

∗)) = ρ(Υ′2(W
∗)) < 1,

where ρ(•) is the spectral radius of matrix “•.”
Proof: First, with β > α

2
√

λm in
, the Hessian matrix of L at

(X∗,W∗) will be positive definite, i.e.,

∇2L =
[

A B
BT C

]
=

[
2βQ̂ αI
αI 2βI

]
� 0. (14)

Based on the Schur complement of a block matrix, (14) is equiv-
alent to

2βQ̂ � 0, 2βI � 0

2βI− αI(2βQ̂)−1αI = 2βI− α2

2β
Q̂−1 � 0

⇔ 2β

(
I− α2

4β2 Q̂−1
)
� 0

⇔ ρ

(
α2

4β2 Q̂−1
)

< 1. (15)

By differentiating (13), we get Υ′1(X) = Γ′1Γ
′
2(X) and then

differentiating ∂L(X ,Γ2 (X))
∂ (W ) with respect to X and evaluating at

X∗ leads to

∂2L
∂W2 Γ′2(X

∗) + αI = 2βIΓ′2(X
∗) + αI = 0

⇔ Γ′2(X
∗) = − α

2β
I.
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Similarly, it is easy to obtain

∂2L
∂X2 Γ′1(W

∗) + αI = 2βQ̂Γ′1(W
∗) + αI = 0

⇔ Γ′1(X
∗) = − α

2β
Q̂−1 .

Therefore

Υ′1(X
∗) = Υ′2(W

∗) =
α2

4β2 Q̂−1 . (16)

Combining (15) completes the proof. �
Theorem 3.6: (Local Convergence) If αk is nondecreasing

and upper bounded, let (X∗,W∗) be a local minimum of (8),
then for any starting point (Xk ,Wk ) in some neighborhood of
(X∗,W∗), the sequence {(Xk ,Wk )} generated by Algorithm
1 will converge Q-linearly to (X∗,W∗).

Proof: In Lemma 3.5, we shows that the Hessian ma-
trix of the objective function L is positive definite, and ρ =
ρ(Υ′1(X

∗)) = ρ(Υ′2(W
∗)) < 1. For ρ < 1, there exists δ > 0

such that ρ + 2δ < 1. Based on the definition of spectral radius
of a matrix and continuity of Υ′1(X) at the neighborhood of X∗,
there exists a matrix norm ‖ • ‖δ (depending on δ) such that

‖Υ′1(X)(X−X∗)‖ ≤ (ρ + δ)‖X−X∗‖. (17)

Then, starting with X∗ = Υ1(X∗), we have

‖Xk+1 −X∗‖δ = ‖Υ1(Xk )−Υ1(X∗)‖δ

= ‖
∫ Xk

X∗
Υ′1(X)dX‖δ

= ‖
∫ 1

0
Υ′1(t(X−X∗) + X∗)(Xk −X∗)dt‖δ

≤
∫ 1

0
‖Υ′1(t(X−X∗) + X∗)(Xk −X∗)‖δ dt

≤ (ρ + 2δ)‖Xk −X∗‖δ (18)

where the third equality holds by using the transformation X =
t(Xk −X∗) + X∗ with t ∈ [0, 1]. The last inequality holds
based the fact that when t ∈ [0, 1] and Xk is in the neighborhood
of X∗, then X = (t(Xk −X∗) + X∗) will also be in the neigh-
borhood of X∗, thus the inequality (17) holds for X. A similar
result for Wk can be proved by using the same scheme. In
summary, the sequences {Xk}, {Wk} generated by Algorithm
1 will converge to X∗,W∗, respectively. �

Remark 2: The above theorem shows that each local min-
imum (including the global minimum) is locally stable. In the
simulation experiments, however, algorithm 1 can always drive
a random initial guess to the global minimum of the SNL prob-
lem. We leave the global convergence proof as one of our future
research directions.

C. Centralized SNL Framework Based on ARMA

The proposed ARMA for solving rank-constrained SDP prob-
lems is first applied to SNL in a centralized framework. As we
described in Section II-B, considering the inequality conditions
of nonadjacent nodes, that is, ||xi − xj || ≥ R0 , (i, j) ∈ V2 \ Ē

will contribute to additional information for sensor localization.
With these additional nonadjacency constraints, problem (4) can
be reformulated as follows:

min
Z

0

s.t. Z(1:s,1:s) = Is , Z ∈ Sn
+

[0s×1 ; ei − ej ]T Z[0s×1 ; ei − ej ] = d2
i,j ,∀(i, j) ∈ Ess

[xk ;−ei ]T Z[xk ;−ei ] = d2
k,i ,∀(k, i) ∈ Eas

[0s×1 ; ei − ej ]T Z[0s×1 ; ei − ej ] ≥ R2
0 ,∀(i, j) ∈ (Ē \ Ess)

[xk ;−ei ]T Z[xk ;−ei ] ≥ R2
0 ,∀(k, i) ∈ (Ē \ Eas)

rank(Z) = s. (19)

Based on the general formulation of rank-constrained SDP,
problem (19) can be rewritten as follows:

min
Z

0

s.t. Z(1:s,1:s) = Is

〈Qi ,Z〉 = ci, i = 1, 2, . . . , N

〈Qj ,Z〉 ≥ R2
0 , j = 1, 2, . . . , b

rank(Z) = s, Z ∈ Sn
+ (20)

where b is the number of nonadjacency constraints. That is,
b = (n+m )(n+m−1)

2 − |Ē|.
In addition, since the graph of an infinitesimal rigid network

is connected and there is at least one anchor, according to [42,
Lemma 3], Assumption 3.3 is satisfied for the SNL problem.
Therefore, by applying ARMA described in Algorithm 1, prob-
lem (20) is solved alternatively until it converges. Furthermore,
by considering the inequality constraints on nonadjacent nodes
of a network, new sufficient conditions for unique localizabil-
ity can be achieved. To state the new conditions, the following
lemma is first given.

Lemma 3.7: If a framework (G,x) is infinitesimally rigid
in Rs , then for each i ∈ V , all neighbors of i cannot lie in a
hyperplane of Rs−1 .

Proof: Assuming that all neighbors of i lie in a hyperplane
of Rs−1 , we prove the statement by constructing a nontrival
infinitesimal motion for framework (G,x). Without loss of gen-
erality, letting x1 , . . . , xl be the neighbors of xi , it is easy to
show that x1 , . . . ,xl ,xi must lie in a hyperplane of Rs . We
refer to this hyperplane as M . Let η ∈ Rs be a normal vector
of M , then a = (0, . . . , 0, ηT , 0...0)T ∈ Rns should be an in-
finitesimal motion of the framework (G,x), where ηT includes
the (i− 1)s + 1th to isth components of a. It is obvious that
a is neither a rotation nor a translation, which implies that a is
nontrivial. A contradiction with infinitesimal rigidity of (G,x)
arises. �

Let Hyk
= Is − 2ykyT

k be the Householder transformation,
yk is a unit vector that is orthogonal to the hyperplane deter-
mined by xk1 , . . . ,xkl

, ki ∈ Nk , l = |Nk |. With Lemma 3.7
stated above, we can give the following result.
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Theorem 3.8: Suppose that (H,x) is infinitesimally rigid,
the sensor network is uniquely localizable if and only if for any
k ∈ Vs , one of the following two conditions is satisfied.

i) There exist s + 1 nodes in Nk not lying in a hyperplane
of Rs .

ii) Condition (i) is invalid. There exists a node i ∈ V \ Nk ,
such that ||xi −Hyk

xk || < R0 .
Proof. Sufficiency: We prove the result by induction. When

|V| = 3, since we have stipulated that n > s ≥ 2, all three sen-
sors are anchors, and it is straightforward that the network can
be uniquely localized.

Assume that the network (H,x) with |V| = N sensors
can be uniquely localized, where H = (Vs ∪ Va , E). Next, we
show that after adding a sensor k and related edges satis-
fying condition (i) or (ii), the induced network (H̄,x) with
|V| = N + 1 sensors can still be uniquely localized, where
H̄ = (V̄s ∪ Va , E ∪ Ek ), Ek includes all edges involving k. We
consider the following two cases.

Case 1: Condition i) is satisfied. Without loss of generality, let
t1 , . . . , ts+1 be the s + 1 nodes inNk not lying in a hyperplane
of Rs . Then, we have

||xk − xti
||2 = d2

ik , i = 1, . . . , s + 1. (21)

By a subtraction between the first equation and each equation
in (21), for i = 1, . . . , s, we obtain

2
s∑

j=1

(xti + 1 j − x1j )xkj = d2
ti + 1 k − d2

1k +
s∑

j=1

(x2
ti + 1 j − x2

1j )

(22)
where xkj , is the jth component of xk , and xij is the jth
component of xi .

Let xk1 , . . . ,xks be unknown quantities and A = (xt2 − xt1

, . . . ,xts + 1 − xt1 )
T ∈ Rs×s , then the linear equality in (22) can

be written as Axk = d̃, where d̃ = (..., d2
ti + 1 k − d2

1k +
∑s

j=1

(x2
ti + 1 j − x2

1j ), ...)
T .

The nondegeneracy of xt1 , . . . ,xts + 1 implies that A ∈ Rs×s

is of full rank. According to Cramer’s rule, xk can be uniquely
determined.

Case 2: Condition (ii) is satisfied. Since condition (i) is in-
valid, by Lemma 3.7, xk1 , . . . , xkl

determine a unique (s− 1)-
dimensional hyperplane M . It is obvious that Hyk

xk satisfies
all distance constraints. Next, we show that Hyk

xk is the only
possible undesired position of k. Suppose x′k is a coordinate
distinct to xk satisfying all distance constraints, since there are
at most two points in a line having the same distance from
one point, it suffices to show that xk − x′k is perpendicular
to M .

Note that for any i ∈ {1, . . . , l}, we have ||xk − xki
||2 =

||x′k − xki
||2 , which implies (xk +x ′k

2 − xki
)T (xk − x′k ) =

0. Hence, for any i, j ∈ {1, . . . , l}, there holds (xki
−

xkj
)T (xk − x′k ) = 0. We then conclude that xk − x′k is per-

pendicular to M . It follows that x′k = Hyk
xk . Note also that for

any i ∈ V \ Nk , there must hold ||xi − xk || ≥ R0 . Since the
condition ||xi −Hyk

xk || < R0 prevents xk from being x′k , xk

can be uniquely determined.

Necessity: Suppose that conditions i) and ii) do not hold. From
the proof for sufficiency, it is straightforward that x′k = Hyk

xk

is an undesired coordinate satisfying all distance constraints.
That is, the sensor network is not uniquely localizable. �

One can observe that although the framework in Fig. 2 is not
globally rigid, it satisfies the condition in Theorem 3.8.

IV. DISTRIBUTED FRAMEWORK FOR SNL

In this section, a node-based distributed algorithm for SNL
is proposed, where the original problem is decomposed into a
group of subproblems and each subproblem is solved indepen-
dently using the proposed ARMA. In the node-based distributed
algorithm, it is assumed that each node has access to local infor-
mation only. In other words, it can only obtain the measurable
distances of anchors and sensors located within its radio range.
For example, denoting the position vector of the ith sensor at the
pth iteration as x(p)

i ∈ Rs , then the ith subproblem is formulated
as follows:

min
x( p )

i

0

s.t. ‖x(p)
i − x(p−1)

j ‖2 = d2
i,j ,∀j ∈ V i

s

‖x(p)
i − xk‖2 = d̂2

k,i .∀k ∈ V i
a (23)

where x(p−1)
j ∈ Rs denotes the estimation of the jth node’s po-

sition vector at the (p− 1)th step, V i
s refers to the set of adjacent

sensors of ith sensor with (i, j) ∈ Ess , and V i
a refers to the set

of adjacent anchors of the ith sensor with (i, k) ∈ Eas . Since
the nonadjacency constraints belong to global information, they
will not be involved in the distributed algorithm. Under this
venue, the SNL problem in (1) is decomposed into m subprob-
lems. However, any low precision or incorrect estimation at
the (p− 1)th step may lead to an infeasible solution of (23).
Therefore, to guarantee the feasibility of each subproblem, the
quadratic equality constraints expressed in (24) are relaxed by
introducing a new variable vector li , i = 1, . . . ,m, such that

‖x(p)
i − x(p−1)

j ‖2 = (l(p)
i,j )2 , ∀j ∈ V i

s (24)

where l
(p)
i,j is the jth element of li at the pth iteration. Then,

problem (24) can be reformulated as an optimization problem
to minimize the differences between l

(p)
i,j and di,j , expressed as

follows:

min
x( p )

i ,l( p )
i

∑
j∈V i

s

|l(p)
i,j − di,j |2

s.t. ‖xk − x̄(p)
i ‖2 = d̂2

k,i , k ∈ V i
a

‖x̄(p)
i − x̄(p−1)

j ‖2 = (l(p)
i,j )2 , j ∈ V i

s . (25)

By denoting

Z(p)
i =

[
Is x(p)

i

x(p)
i

T
Yi

]
∈ Ss+1

+ (26)
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problem (25) can be rewritten in a matrix form with the rank
constraint

min
Z ( p )

i ,l( p )
i

∑
j∈Ns

|l(p)
i,j − di,j |2

s.t. Z(p)
i(1:s,1:s) = Is

[0; ei − ej ]T Z(p)
i [0; ei − ej ] = l2i,j , ∀j ∈ V i

s

[xk ;−ei ]T Z(p)
i [xk ;−ei ] = d̂2

k,i , ∀k ∈ V i
a

Z(p)
i � 0, rank(Z(p)

i ) = s.

(27)

By replacing the rank constraint with its equivalence stated in (7)
and considering a weighted penalty term 〈Z,W〉 in the objective
function, problem (27) can be solved via the proposed ARMA.
Following the procedures of Algorithm 1, the two sequential
problems for solving problem (27) are stated ahead. First, given
Wp−1

i , we will solve

min
Z ( p )

i ,l( p )
i

∑
j∈N i

s

|l(p)
i,j − di,j |2 + αp〈Zp

i ,W
p−1
i 〉

s.t. Z(p)
i(1:s,1:s) = Is

[0; ei − ej ]T Z(p)
i [0; ei − ej ] = l2i,j , ∀j ∈ V i

s

[xk ;−ei ]T Z(p)
i [xk ;−ei ] = d̂2

k,i , ∀k ∈ V i
a

Z(p) � 0. (28)

Next, given Zp
i , we will determine Wp

i by solving

min
W p

i

∑
j∈N i

s

|l(p)
i,j − di,j |+ αp〈Zp

i ,W
p
i , 〉

s.t. tr(Wp
i ) ≥ n− r

I−Wp
i � 0

Wp
i � 0. (29)

When the objective value in (28) is sufficiently small at the
pth step such that∑

j∈N i
s

|l(p)
i,j − di,j |+ αp〈Zp

i ,W
p−1
i 〉 ≤ ε1 (30)

then the solution Zp
i satisfies all equality constraints and

rank(Zp
i ) = s, which implies the solution is the exact one. To

accelerate the convergence, the sensor node i in subproblem (27)
will be treated as a new “anchor” and its position will not be
updated at the next step p + 1 if (30) holds at step p. In addition,
if any subproblem is infeasible at one iteration, the estimation
of the corresponding node will not be updated at the end of that
step.

The distributed algorithm is summarized in Algorithm 2,
where ε1 , ε2 , and ε3 are sufficiently small constants, and the
initial guesses of the sensors’ positions are randomly generated
as neither global nor local information being available at the
beginning.

Algorithm 2: Distributed ARMA for SNL Problem.

Input: xk , k ∈ Va , Ess , Eas , di,j , d̂k ,i , ε1 , ε2 , ε3 , θ, {α}.
Output: Local optimum x∗1 ,x

∗
2 , . . . ,x

∗
m .

1: begin
2: Initialize the random locations of sensors:

x0
1 ,x

0
2 , . . . ,x

0
m , and X(0) = [x0

1 , · · · ,x0
m ]T . Initialize

the random W0
i .

3: for p← 0 to pmax do
4: for each sensor i← 1 to m do
5: update V i

a ,V i
s from X(p) ;

6: update Zp+1
i by solving (28) with Wp

i ;

7: update W(p+1)
i by solving (29) with Zp+1

i ;

8: if
∑

j∈N i
s
|l(p)

i,j − di,j |+ αp〈Zp
i ,W

p−1
i 〉

≤ ε1 then
9: Set node i as an anchor;

10: end if
11: update x(p+1)

i in (26) from Z(p+1)
i

12: end for
13: update X(p+1) = [x(p+1)

1 , · · · ,x(p+1)
m ]T .

14: if
∑m

i=1〈Z(p+1)
i ,W(p+1)

i 〉 ≤ ε3 & ‖X(p+1)

−X(p)‖ ≤ ε2 then
15: break;
16: else
17: X(p+1) ← X(p+1) + θ(X(p+1) −X(p))
18: p← p + 1
19: end if
20: end for
21: end

V. SIMULATIONS

In this section, both noise-free and noisy simulation examples
are presented to demonstrate the performance of the proposed
ARMA in centralized (Algorithm 1) and distributed (Algorithm
2) frameworks for solving SNL problems. Comparisons of the
SDPR in [19] and a sparse version of full SDP (SFSDP) in
[43] are also presented. Both frameworks are implemented in
MATLAB SeDuMi [40]. The simulations are carried out on
a PC with a 3.60 GHz Intel Xeon E5 processor and 32 GB
of RAM. In Algorithms 1 and 2, some parameters are set
as ε1 = 1e− 10, ε2 = 1e− 4, ε3 = 1e− 6. The performance
of both frameworks is evaluated by comparing two indexes:
1) rms error ErrRMS and 2) maximum error Errmax , defined as

ErrRMS =

√√√√ 1
m

m∑
i=1

‖xi − xreal
i ‖2 (31)

Errmax = max
i=1,...,m

‖xi − xreal
i ‖. (32)

A. SNL for an Infinitesimally Rigid Grounded Graph

Consider a simple 2-D case with 3 anchors and 2 sensors
shown in Fig. 3, where the three anchors (black diamonds) are lo-
cated at (−0.05,−0.08)T , (0, 0.05)T , (0.02,−0.05)T , blue cir-
cles represent the real positions of 2 sensors, and blue crosses
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Fig. 3. Comparisons of SDPR and ARMA under different measurement
ranges. (a) Results from SDPR with R0 = 0.28. (b) Results from ARMA
with R0 = 0.28. (c) Results from SDPR with R0 = 0.23. (d) Results from
ARMA with R0 = 0.23.

are the estimated locations. In addition, red-dashed circles show
the radio ranges of the anchors. As shown in Fig. 3(a) and (b),
when R0 = 0.28, the network is globally rigid, then both SDP
relaxation and ARMA can solve the problem exactly. Whereas
when R0 = 0.23, the grounded graph is infinitesimally rigid
but not globally rigid, then each sensor to be determined has
only two distance measurements. Fig. 3(c) demonstrates that
the estimations from SDP relaxation are incorrect, as circles
and crosses do not overlap. In contrast, by considering the non-
adjacency inequality constraints and the rank constraint, the
proposed ARMA can obtain the exact solution where circles
and crosses overlap, as shown in Fig. 3(d). In fact, the grounded
graph in this example satisfies the conditions stated in Theorem
3.8.

B. Randomly Generated SNL Cases

1) SNL in Noise-Free Environments: To further compare
the performance of the proposed algorithms with SDPR [19]
and SFSDP [43], Algorithms 1 and 2 are implemented to solve
several simulation cases that are randomly generated. In these
cases, the anchors are evenly distributed in [−0.5, 0.5]2 and
all sensors are randomly generated. All results are listed in
Table I, where Pexact stands for the percentage of sensors that
obtain the exact solutions, Ttotal denotes the total computation
time of the centralized algorithm, and Tnode is used to evalu-
ate the average computation time per node in the distributed
algorithm. Note that the randomly generated sensors make it
possible that there exists some unlocalizable nodes in the net-
work, which leads to the fact that Pexact < 100% even when the
algorithm converges. In addition, when the number of nodes
is greater than 100, both SDPR and the centralized ARMA re-
quire significantly long computation time to find the solutions.
Hence, we only present the result obtained from SFSDP and the
distributed algorithm for the case with 100 sensors in the last
column of the table.

TABLE I
PERFORMANCE OF SDPR, ALGORITHM 1 AND ALGORITHM 2

FOR ALL FOUR CASES

Fig. 4. Comparative results for case 3. (a) Results from SDPR for case
3. (b) Results from SFSDP for case 3. (c) Results from Algorithm 1 for
case 3. (d) Results from Algorithm 2 for case 3.

From the comparative simulation results, three conclusions
are derived below. First, ErrRMS and Errmax from the central-
ized ARMA in Algorithm 1 are smaller than those obtained from
SDPR. In other words, Algorithm 1 can obtain more precise es-
timates than SDPR and SFSDP. Meanwhile, the distributed al-
gorithm 2 has similar accuracy when compared to the SDPR and
SFSDP. Specifically, Fig. 4 shows the optimized solution from
three methods for case 3. One can observe that only the cen-
tralized ARMA can perfectly localize all sensors. For SDPR,
SFSDP, and distributed algorithm 2 based on random initial
guesses, shown in Fig. 4(d), errors exist in the estimations of
the same four sensors. The reason why ErrRMS and Errmax
from the distributed ARMA are larger than SDPR is that the
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Fig. 5. Results and convergence histories of Algorithm 2 for case 4.
(a) Results from Algorithm 2 for case 4. (b) Convergence histories of
Algorithm 2 for case 4.

converged results of these four nodes in algorithm 2 are in-
correct, in fact, these solutions are local optima satisfying all
equality constraints.

Second, taking the nonadjacency inequality constraints and
rank constraint into account, the centralized ARMA in Algo-
rithm 1 can obtain exact positions for a higher percentage of
unknown sensors, which is consistent with Theorem 3.8. Mean-
while, the distributed algorithm can localize the same percentage
of sensors compared to the two centralized methods, SDPR and
SFSDP. Note that cases 1 and 2 have the same set of anchors but
different undetermined sensor sets and radio range. Obviously,
a larger radio range leads to a higher percentage of obtained
exact solutions from all four methods.

Finally, as the number of nodes increases, the computational
time of centralized methods increases much faster than that of
the distributed method. For example, the SDPR method takes
22 s to solve a 50-sensor case but 325 s to obtain the opti-
mal solution for an 80-sensor case. Similarly, the centralized
ARMA in algorithm 1 takes 2 iterations (42.7 s) in case 1, 7
iterations (192 s) in case 2, and 3 iterations (1506 s) in case 3.
However, due to the application of sparsity, the time of SFSDP
is much smaller than SDPR and ARMA. With the proposed
distributed approach, the computational time per node is about
50 s in all cases, which makes it more scalable for large-scale
SNL problems. Fig. 5 presents the results of the proposed dis-
tributed algorithm for case 4. As Fig. 5(a) shows, 96% of nodes
are determined after 123 iterations. Fig. 5(b) illustrates the con-
vergence history of the distributed method, where the blue-
cross curve stands for ‖(tr(Zp

i ,W
p
i ))‖∞ and the red-triangle

curve represents ‖lp − dp))‖∞, where the Y-axis is denoted
by log10(‖lp − dp))‖∞). When ‖(tr(Zp

i ,W
p
i ))‖∞ goes to zero,

matrix Z satisfies the rank-s constraint, while ‖lp − dp))‖∞ →
0 implies that all equality constraints are gradually satisfied.
As shown in Fig. 5(b), the values of ‖(tr(Zp

i ,W
p
i ))‖∞ and

‖lp − dp))‖∞ dramatically decrease after 90 iterations.
Furthermore, Fig. 6(a) and (c) shows histories of tr(Z,W) at

each iteration under the proposed centralized and distributed al-
gorithms, which verify the convergence of the proposed ARMA.
Fig. 6(b) and (d) illustrates the percentage of localized sensors in
Algorithms 1 and 2 for these cases, respectively. Fig. 6(d) shows
that most of the sensors are localized within 50 iterations, but
it takes more time to localize the rest due to the existence of
sensors that are not localizable.

Fig. 6. Convergence histories of Algorithm 1 and 2 for all four cases.
(a) Convergence histories of Algorithm 1. (b) Percentage of localized
sensors in Algorithm 1. (c) Convergence histories of Algorithm 2. (d)
Percentage of localized sensors in Algorithm 2.

Fig. 7. Comparative results for an SNL with noisy measurements.
(a) Localized sensors using SDPR. (b) Localized sensors using
Algorithm 1.

2) SNL in Noisy Environments: To evaluate the potential
of applying the proposed algorithm to cases with noisy measure-
ments, an SNL with noisy distance measurements is presented
here. Let the range measurement be

d̂i,j = di,j + ηi,j , (i, j) ∈ E (33)

where di,j = ‖xi − xj‖ is the true distance between sensors i
and j, and |ηi,j | ≤ ηmax is the unknown and bounded measure-
ment error, respectively. Then, in the SNL problem formulated
in (2), all distance constraints are expressed as inequalities

dij − |ηij | ≤ ‖xi − xj‖ ≤ min(dij + ηij , R0), (i, j) ∈ E .
(34)

Obviously, there is no contradiction between the inequalities in
(34) and nonadjacent constraint ‖xi − xj‖ ≥ R0 , (i, j) �∈ Ess.

In the simulation, let the three anchors (black diamonds)
locate at (−0.05,−0.08)T , (0, 0.05)T , (0.02,−0.05)T , R0 =
0.28 and 0 ≤ ηij ≤ 0.2dij . Eight sensors to be localized are
randomly generated within the box [−0.25, 0.25]2 . Fig. 7
presents the localized results from SDPR and the proposed
Algorithm 1. It is obvious that the proposed method localizes all
of these sensors with much higher accuracy. Accordingly, the

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 10,2022 at 01:33:55 UTC from IEEE Xplore.  Restrictions apply. 



1050 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 2, JUNE 2020

errors of Algorithm 1 (ErrRMS = 0.009 and Errmax = 0.0115)
are much smaller than the errors of SDPR (ErrRMS = 0.0755
and Errmax = 0.02024). Therefore, the proposed centralized
method can be extended to noisy cases.

VI. CONCLUSION

In this paper, the SNL problem has been revisited. We pre-
sented novel results on both the graph condition and the position-
seeking algorithms. By considering nonadjacency inequality
constraints, a milder graph condition for unique localizability
has been provided. To solve the distance-based SNL problem,
an ARMA has been proposed, which can be applied to a class
of general rank-constrained SDP problems. To reduce compu-
tational costs and improve scalability, a distributed algorithm
based on ARMA has also been proposed. The underlying ap-
proach is to decompose SNL into a group of sensor-based sub-
problems, where each subproblem can be solved by ARMA iter-
atively using local measurements obtained from its neighbors.
Simulation examples in different scales have been presented
to demonstrate effectiveness, efficiency, and robustness of the
proposed algorithm in centralized and distributed frameworks.
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